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ABSTRACT

In the unconstrained channel with additive Gaussian noise, where

the optimum detector is based on correlation or matched filters, the

quality of a code can be expressed as a function of the correlation

values between code words. For a cyclic-sequence code, optimality

reduces to a criterion to be met by the autocorrelation function of

the sequence. Methods are presented here for determining cyclic

sequences with given correlation properties.

When the amount of equipment in the receiver is limited, matched

filtering is no longer the optimal detection scheme. A better system,

as is shown here, is one which, by the use of a Boolean function,

combines several "component" sequences to generate the transmitted

signal; the receiver consists of filters matched to each component. The

logic, the number of components, the requirements of the component

sequences to optimize the system, and a general method for treating

B'-_lean logics are presented in this Report.

I. INTRODUCTION

Over the past few years, cyclic sequences have played

an increasingly important role as information codes in

digital communications. They have found a welcome

place in secret and secure communications schemes, mis-

sile command and telemetry systems, and interplanetary

and satellite ranging experiments. Each such scheme

exerts its own particular need on the type of code it

uses; but because the optimal detectors for the Gaussian

channel are correlating devices, part of each need can

be described as a requirement on the correlation of a
code.

The performance of such systems relies heavily upon

the types of sequence correlation properties available to

the designer. He desires a code which will tend to min-

imize the errors caused by noise. This means that each ot

the possible situations presented to the receiver must be

as mutually distinguishable as possible. When the in-

formation of a code is contained in the phase shift of a

transmitted sequence, maximal distinguishability means

that the autocorrelation function of the sequence must

be much higher in-phase than out-of-phase.

On the other hand, suppose that the combined phase

shifts of several sequences are the information carriers,

and suppose that we combine, at the transmitter, these

several sequences into a single code. This combined
code now carries information concerning the phase of

each "component" sequence; but it is necessary to find

an optimal set of sequences to correlate with the received
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signal to decode the information. At some phase shift, the
correlation between the combined code and an element

of the decoding set must be as large, and at all other

shifts as small, as possible. With the knowledge of such

shifts and the decoding procedure, one must be able to

interpret the phase information of components uniquely.

In this way, a very long code can be made whose phase

may be determined, component by component, in a

comparatively short time and with a limited amount of

receiver equipment.

It is the purpose of this Report to investigate autocor-

relations of single- and multicomponent sequences and

cross-correlations between a sequence and its components,

and to develop methods by which sequences having

given correlation properties can be synthesized.

Binary sequences with two-level autocorrelation func-

tions have been characterized elsewhere (Ref. 1, 2, 3, 4),

and methods have been devised to synthesize them when

they exist (for example, linear shift registers, quadratic

residues). When the two-level property does not exist,

there has been, up to now, no method, except exhaustive

search, to find nearest-to-ideal sequences. There are,

however, iterative methods which yield near-optimum

sequences of any cyclic length. There are other methods,

which apply to certain periods, that produce the most

distinguishable sequences for those periods. These meth-

ods are developed here, as well as general methods for

the analysis of modulation and sequences generated by

Boolean functions of component sequences.

Insofar as it was feasible, this Report has been made a

self-contained entity, starting with motivating arguments

based on modulation by sequences, continuing with the

subsequent detection, and extending to synthesis of se-

quences with given properties. It was, of course, impos-

sible to make it entirely self-contained, and there are

numerous references to texts and articles throughout.

The requisites necessary to read the sequel are limited
to elementary calculus, number theory, and modem alge-

bra. The latter two may be somewhat unfamiliar to most

engineers, but no more than the first few chapters of

Nagell's Introduction to Number Theory (John Wiley,

1951) and Birkhoff and MacLane's A Survey of Modern

Algebra (MacMillan, 1950) should be needed to follow

the argument.

2
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Ih MODULATION OF SIGNALS BY SEQUENCES

The notion of having a signal or set of signals modu-

lated by a digital sequence is not new in communications;

in fact, multiplex, frequency-shift keying (FSK), CW

telegraphy, etc., have been using this concept for years.

In these systems, it is usually assumed that the modu-

lation is binary, not coherent with the carrier, and not

periodic. However, it has become necessary in many more

modern schemes to modulate by codes which are cyclic,

coherent, and/or nonbinary (Fig. 1).

SEQUENCE

GENERATOR

('1.', .... ",} IMODULATOR OUTPUT .g(t)

of some basic time interval to. This may be treated as

amplitude modulation where the modulation is -+-1.

When the carrier and modulation are independent, the

spectrum rolls off at 6 db/octave, and the spectrum is

merely the convolution of modulation with carrier. But

when the carrier shifts 180 deg only as it passes through

zero, the spectrum falls off at 12 db/octave. For more

complicated carriers or modulation, the change due to
coherence can be even more drastic.

A general method for computing the power spectrum

of signals produced by such sequence-modulation

schemes was given in 1959 (Ref. 8, 9) by the author in
collaboration with L. R. Welch. Part of this method is

repeated here to present an efficient method for spectral

calculation, to demonstrate that it is possible to express

the spectrum as a linear function of the sequence corre-

lation values, to indicate the type of sequence correlation

desirable from a spectral simplicity point of view, and to

illustrate the form of the spectrum in some practical cases.

CLOCK
WAVEFORM

GENERATOR

{/_l ( ')r.-t h,(' )}

Fig. 1. Sequence modulation technique

A coded interplanetary and space radar recently de-

veloped at the Jet Propulsion Laboratory (Ref. 5, 6) is

coherent throughout and uses periodic modulation. Many

improvements in jam-proof, secure, or missile command

systems are also being based on such principles. Certain

cyclic nonbinary codes have much to recommend them

and can be used to advantage in telemetry systems

(Ref. 7).

In the case of noncoherent, nonperiodic modulation,

calculations could be made regarding spectral distribu-

tion by assuming that the carrier and modulation were

statistically independent. Such an assumption no longer

remains valid for coherent systems. In fact, it may often

lead to basically erroneous results.

For example, let a sinusoidal carrier be phase modu-

lated ___90 deg, changing randomly at integral multiples

A. The Spectral Equation

Let

{h, (t): i = 1,2 ..... b;h, (t) = 0for t not in (0, to]}

be a set of distinct, Fourier-transformable functions, and
let

a= {a,:n = ...,-2,-1,0,1,2,... }

be a doubly infinite sequence of elements belonging to a
finite set

{e,:i= 1,2 .... ,b}

of objects, or states; that is, a is a mapping of the integers

onto the set {el}. Let 8,_ be a type of Kronecker delta
defined by

8"_={10 ffa_=e'}ffa_=/=e,=8(e,,a,) (1)

The sequences

8' : {8_: n : ..., -2, -1,0,1,2 .... },(i = 1,2 ..... b)

are proiections of the separate states onto binary (0, 1 )

sequences.

We allow the functions { h, (t)} to be chosen by the
sequence states to form a signal (Fig. 1).

3
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x(t) = _ 2 84hi(t-nt°) (2)
t=l ._o0

whose spectrum we wish to determine. We describe x(t)

as the result of modulating {h,(t)) by the sequence a.

We can visualize x(t) as the output of a b-port linear

filter (Fig. 2) whose inputs are 8-function trains

8_ (t) = 2 848 (t -nto) (3)
. oo

and whose unit impulse responses are hi(t). This is true

because the filter output (Itef. 10) is

b +o_

zf: zh, (t') 84 8 (t -nto -t') dr"
'=1 - ._®

b *._ (4)

= Z Z ,4h, (t-nto) = x(t)
t=l n---Qo

With this input time series, the output spectrum of a

linear filter (Ref. 11) is given by

b b

s../,/= <,)s,.
i=l I;=1

where (*) indicates complex conjugation, Hi(f) is the

transform of the impulse response,

t,H_ (f) = hi (t) e -j',1' dt (6)

I a'(t) _1SEOUENCE I SZgt_ LINF._R

OUTPUT, x(t}

CLOCK

to

Fig. 2. Mathematical model of modulation by sequence

and S_k(f) is the transform of the (time) cross-correlation

cik (r) between the ith and kth inputs.

1 /-+r
c,_ (,) = lira®-_j_, 8' (t) _ (t + ,) dt (7)

By substituting for 8'(t) and 8k(t + r) their 8-function

representations, the last equation expands to

c,k (_) = ,-.._lim"_ J-r 84 8_ 8 (t-nto)
tl=-oo tlt=-oo (8)

X 8(t + r-into) dr

The sifting action of the integral means that we can

set T = Nto; consequently, the limits in the sum over n

must be replaced by

-N < n < N (9)

Completing the integration and simplifying the result

yield

"I'm 1
We can take the transform of cidr) to get

+'[ 11 2/ ' 8_.., exp (-j2,_fmto)
S,p,(f) = _ "=-**L ;i_,m**-_._..=_-,v8,

(11)

The term in brackets is of particular interest because it

represents correlation between the ith and kth states of

the sequence.

If a is stochastic, we average c,k(r) over the ensemble

of stochastic variables, and if a is periodic, we may let N

take on only integral multiples of the period. Whenever

we can assure ourselves that the limit will exist, we de-

fine the normalized state-correlation of the sequence by

+ie

1 _-_ _ k
r_(m) = lira _ z.4 8. 8.,. (19.)

The final resulting spectral equation for a sequence mod-

ulated process is

b b

s., (f) = _ (13)'= k=l

× r_ (m) exp (-i2_fmto)

4
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Note in this equation that S,,(/) is very simply related

to the signals h_(t) and to the correlation values r_k(m);

Sn(f) is a function of carrier properties and sequence

properties in which the sequence correlation properties

enter linearly into the calculations and in which the car-

rier and sequence properties influence each other in a

simple, multiplicative way.

By defining

H (f) = [H_ q3 .... , n_ (f)]"

r (m) = [rik (m)]
(14)

÷**

$ (f) = _._ r (m) exp (-i2_hnto)
tW **

the spectral equation can be put in matrix form:

Sn (,f') =H" (_ $ _ H (f) (15)

To find the autocorrelation function of x(t), we merely

take the inverse Fourier transform of S,,(I):

_+Q0
e_ (,) = s,,. (_f_xp (i_4,) ,if

. _ b F+** -'1

'j_ J= To ** ,',_(_) exp(-#9.._o)

× H t (f) H, (f) exp (#_f.) d/ (le)

Express r = mto + to, where 0 _< ro < to, and substitute

the corresponding Fourier integral forms for H_0 r) and
H_(f). This yields

b b +**

t_.(mto + ,-o) = To ,',,,(-)
-- k_l 'm_**

×f;" f" f[ ,.,<.,,,,<,,(17,

× exp [i2_s -t + .o - (n -m)to)]dfdsdt

In the integration over f, we use the expression relating

the 8-function to its Fourier integral,

£-8 (t) = _ exp (#2_/t) df (18)

to give the equation

b b +Go

1__ _/""(") = To r,,,(.)
= - m_oo

/:× hi (s)h_ Is + ro -- (n -- m)to]ds

(19)

All of the terms in the sum over n vanish except those

with n = m and n = m + 1. Now, define

_if +**
¢,_(.r) -'_oJ-** hi(s) hk(s + r) ds (20)

The final expression for the autocorrelation of x (t) is

b b

.../,,,,o+,o: _>2 ¢_,,(,o)

i:l L-i (21)

+ rik(m+l) ¢ik(,o - to)]

When ro = 0, there is no overlapping of intervals, and the

second terms above vanish.

b b

= (22)
i=1 _1

Here, ¢ik(O) takes on the specialform

Xfo",/,o,(0) = "_o hi(t) h_(t) dt (2,3)

The average power S in x(t) is then

b

xz L"S = R,,(0) = r,(0) h_ (t)dt

. 1--1

(24)

12S = To E_ r.(O)
i--1

where Ei is the energy in hi(t).

The correlation matrix r(m) defined above can be

further decomposed to reveal a few properties of a. First,

r(0) is a diagonal matrix; r.(0) is the relative frequency

(probability) p_ with which state e_ occurs in a. (We will

assume that all r. (0) # 0, so that all states are non-null. )

Second, rlk(m) is the relative frequency (probability) with

which states e_ and ek occur separated by m steps. And

third, we can apply a Bayed rule to get conditional rela-

tive frequencies (probabilities), piE(m) that ei is followed

m steps later by ek, given that ei has occurred in a:

p,_(m)- rik(m)
r.(0) (25)

In matrix notation, we write r(0) = ro

r(m) = ro P(m) (26)

B. Markov Modulation

In this Section, we let a be a stationary, irreducible,

aperiodic Markov chain (Ref. 12). The outstanding prop-

erty of such a chain is that

5
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(ro [P(1)]" m_> 1

r(m) = _([ Pr(1)]-'r° m _< - 1

(27)

For convenience, we then set P(1) = P, so

troP" ( 28 )
m > 1

r(m) = ((P')-" ro m <_- 1

The expression for S(f) is then a geometric series

_ (2o)

+ [_(P.)- exp( + ,_.#o)-J .o

The form of P is that of a stochastic matrix (Ref. 13, 14)

whose eigenvalues must then lle on or within the unit

circle. There is always at least one eigenvalue equal to

unity, and by restricting the chain to being irreducible

and aperiodic, we ensure that there is onhj one unity

magnitude eigenvalue (Ref. 15). But then, $(f) converges

(Ref. 16) for every f, except possibly those for which

exp ( - i_tof) = i
(30)

exp( + i2.40f) = 1

Consequently, S(f) has removable discontinuities possibly

at

f=m m = ... ,-_,-1,0,1,_, ... (31)
to

We investigate these points by looking at the asymptotic

behavior of r(m). Asymptotic'ally,

lira r_,(n) = p,p_
ft-') ¢¢l

because after many transitions, the states become inde-

pendent.

+¢0

Stk(f) = _._ [r_(m) -- p,p_] exp (
-t (3_)

÷_

+ p_p_ _ exp(--]2_tofm)

The latter sum is a well known one, being the Fourier-

series expansion of a g-function train

2 ' "2 --,exp ( - j_,.to_) = To 8(f - to

At all f =/= n/to, this sum is zero:

+GO

so S,_([) converges here to a spectral density. At f =

n/to, we may, for the present, omit the contribution due

to the spectral density:

+_

to
Ilk--_¢o

Substituting these into the spectral equation, we get

S,,(f) = ..1 P,H, (f) S f - n

(3e)

There will be an absence of spectral lines if, and only

if,

b

z p_ Hi = 0 for all n (37)
t=t

But ff we periodically extend the h_(t) outside (0, to],

the function

+¢_ b

K(,)= p,h,(t-...)

aside from a constant factor, has its Fourier coefficients

equal to

b

which axe all zero, and therefore, K(t) = 0.

We reach the conclusion that there are no spectral lines,

ff and only if,

b

, h, (t) = 0 for t in (0, to] (39)

C. Examples of Markov Modulation

Let us assume that a Maxkov chain modulates a set of

sinusoids

_, (t) = sin (., t + _,)
. (40)

6
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with ni an integer (the number of ha_cycles in (0, to]).

We will choose simple chains so that S,_([) takes a sim-

plified form. In each case, we will judiciously select pi,ni,

and ¢i to eliminate spectral spikes.

I. Symmetric Processes

Suppose that for every h_(t) in {hi(t)} there exists an

r such that h,(t) = -h_(t) is in {hi(t)} and p, = m. This
eliminates spikes in the spectrum. Further, assume that

pj_ = p,, whenever hi(t) = +__h,(t) and h_(t) = ___h,(t);

that is, we assume rjk(m) = r,°(m). The spectral equation
reduces to

b

z _ v, In, (f)l's,,(f) =To ,°,
(41)

From this equation we note that the over-all power

spectrum is merely the weighted sum of the energy

spectra of each individual component hi(t) in the mod-
ulated set.

As a special case, we allow unrestricted transitions

1
p_ = pi_ = _ (42)

Routine calcuhtion yields

F • _,-_,_."I'

,oE

×

where oJ : 2.ar[• According to this equation, the phase

angles <hi are of importance in the region _ >>_i. Each

term is a sine-square enveloped by

4 -_ cos s ¢_ + -' sin a ¢_
S.., ([) = _ (" - "I)' (44)

If _b_ is not a multiple of _r, the spectrum ultimately de-

cays at 6 db/octave; but ff 4_i is a multiple of r, there is

a 12 db/oetave roll-off• The rate of approach to the 6-db

asymptote is determined by ¢i, since for 4_i near zero,

the spectrum seems to approach a 12-db limit; but as ,o

grows sufficiently large, the roll-off ultimately changes to
6 db/octave.

When each independent ¢i is considered to be a ran-

dom variable uniformly distributed over [0, 2r), the

resulting spectrum is the average over this range; each
term is of the form

to sm _ to
..... I.... y,o_/ I

Loy,,o/LO+e,)'j
(45)

This is exactly the same equation of spectral density

obtained by assuming independence between carrier and

modulation or by setting each 4_i = _r/4. Figure 8 shows

examples of the spectral distribution of modulated sinu-

soids with different phases, compared to the spectrum

when the sinusoids are replaced by unit square waves of

the same period (maxima are set equal so that roll-off can

be compared). Note that the 90-deg-shifted sinusoid

rolls off at about the same rate as the square wave but

that the 0-deg-shifted sinusoid decays much faster.

2. Equiphase Modulation

Suppose all ,_ are the same, but cbl = 2rilb. The com-

mon value of m we designate ,oo. One may verify that

there are again no spectral lines, and the spectrum is

given by

• (0 i Q)O

S,, ([) - to (-* + -zo) smTt° (46)
9.(_,+ o,o)' o,-_,o

--T-to

This is the same equation for random-phase modulation

given earlier.

3. Slope.Preserving Modulation

We now restrict a to be a Markov chain which excludes

transitions except between waveforms that preserve the

sign of the slope at the changeover times t = nt,,. Again,

for every h,(t) there is a corresponding h_(t)= -hi(t),

and again, pi = p,. However, if we partition {hi(t)} into
the subsets,

(h**} = {hi (t): slope ( + ) att = 0, ( + ) att0)

{h÷_} = {h_ (t): slope ( + ) att = 0, ( - ) atto}

(h__) = {-h++}

{h_+ } = (-h+_}

(47)

7
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%

I'I , }_ _"_",i .
-40 ;I I

.-°. V_[V \./
-60 u • _,

la

_t m#

SQUARE WAVE

.... SINUSOID @O-d_ SHIFT

..... SINUSOIO O-deg SHIFT

n=l

!
'_/'"/i'_ / ,.

"°-_ i'7",,4/_;_' i_. /:,._/Y_:'_;_',r,.',,-,,_._i.'I i /_r/,.,,..1 ; \'i/ i\_l/;f !/

,11

' If' !' '_(-"?_
_ -60

n=2

n:7

o _ _, 3 4 s s 7 s _ _o 0_ i_, i_ 14 0s m _7

FREQUENCY f, cps

Fig. 3. Spectra of signals modulated by Markov chains, for to = 1 (normalized)

The transition matrix is then similarly partitioned

e

[ P+÷ P+ I 0 0

0 0 I P+ P

o o I P++ P.
P+ e I o 0

(48)

Using Eq. (29), we calculate the spectrum

b/2

s,, (f) = To .= _, Im (f)

+ _e{." (f/s (f/_ (f/}

(49)

8
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which involves only the "positive" waveforms h÷÷and h+_,
with

H, (f)

H, (f)

H_/, (f) (50)

_'o = diag [p,, p, .... , p_/,]

s (f) = ,o _p+ _p erp (-1_o-)
m=l

We now work a particular example of a slope-

preserving sinusoidal process described by

b=4

n, = ns i$ even

n, = n,isodd

10 10010
(51)

Substitution of these parameters into the spectrum yields,
upon simplification,

I [ o,_ .' ]'s.(/)=To =,:=I .,_.; sin'.to(S2)

For large f : =/2r, S,(f) decreases at approximately 12

db/octave. This is again because of the chosen phase

relations. Examples of such spectra are illustrated in

Fig. 4. If n_ and n2 are adjacent integers, S,,([) falls off

very rapidly near the fundamental peaks.

D. Random-Like Periodic Modulation

It is well known that periodic signals possess periodic

correlation functions and that their spectra are composed

entirely of impulse functions at multiples of the funda-

mental frequency determined by the correlation period.
Furthermore, it is known that the Fourier transform of a

periodic process x(t) is of the form (Ref. 17)
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FREQUENCY f, cp=

two-frequency processes

where T is the period of x(t)and X,,([) is the Fourier

transform of one cycle of x(t). If x(t) were a correlation

function, R(r),the corresponding transform would be a

power spectrum

,<,, v' ,(,
(54)

s0 if) = a (,) exp(-iz.f) a,.
J -I'/=

A periodic signal thus has a spectrum of "spikes,"

weighted by an "envelope"; this envelope is the power

spectrum of an aperiodic process having identical corre-

lation in (- T/2, + T/2) and zero elsewhere. If this auto-
correlation were some non-zero constant outside this

range, there would be a change in the de value, and if only

approximately constant, the envelope and dc would be

in some slight error, depending on the seriousness of the

fluctuations outside the specified range. Whenever a

periodic sequence has sufficient random-like correlation

properties, we can approximate the envelope of its spec-

tral behavior by that of a random process. For example,

9
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a binary Markov sequence with independent states has
a two-level correlation function and can be approximated
by periodic binary sequences which also possess two-

level correlation functions. The accuracy of this approxi-
mation is surprisingly good, as we shall see.

Given a sequence of a = a whose states ei = _t are

elements of a finite field j_, and a set {70, 7x..... 7,,} of
elements also in _K, then ct is said to be linearly recurring
if for all n

_o__t 7l = 0 (55)
i---o

Such a sequence is easily mechanized by shift registers, as
shown in Fig. 5. Much work (Rd. 18, 19, 20) has been

done on such sequences, and an abundance of informa-
tion about them is available. The major portion of the
theory is not of concern here, but a few significant prop-
erties are given.

The correhtion properties of a are almost like those of a
Markov chain with unrestricted transitions.

p(t) =

1 1 1
b b b

1 1 1
b b b

1 1 1 -- b-_=
• • •

b - b-'_ b - b "_' b- b-_"

for all t _ 0 mod p/( b- 1). When t =_ 0 rood p� (b- 1 ),

P,, (bM-__1) =, (_,.,',,) (58)

for some primitive element _, of the field and _ is the
Kronecker delta. The primitive _, is the dement

_, = a.. a? (59)

for all non-zero at of a, with s = p/(b-1).

If the correlation function is inserted into the hmda-
b-LEVEL SHIFTREGISTERS mental equation (Eq. 13), the spectral distribution is

finally found to be

, 1
OVER K

Fig. 5. Linear shift-register sequence generator

Because each _ belongs to a finite field, the number
of states b = qk, where q is prime. For a given m, the
maximum period p is p = b" -1; these maximum-length
linear recurring sequences are usually referred to merely
as linear sequences or m-sequences (this latter terminol-

ogy is due to Zierler). All states except one occur b _-1
times per l_n'iod. The excepted state is the zero of
_, which only occurs b "-1 -1 times.

The frequencies of occurrence (designating Eb as the
zero element of _K )are

Pi --
p+l

(i= 1,2, ...,b- 1)

p+l-b
(56)

_ (6o)

+ .eLL H_' (f) n_ (f) =_, -
bP= L I=1 t=1 ,.=,

E. Examples of Linear-Sequence Modulation

By choosing processes similar to those treated in our
previous Markov model, we can show a great similarity
between the spectra of signaLs modulated by linear se-

quences and by Markov chains. There are, of course,
certain differences, and these, too, we wish to illustrate.

10
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1. Binary Modulation

When we limit b = 2 and hi(t) = -h2(t), many terms

vanish from S,,(f). The result has exactly the same form

as the corresponding Markov spectrum except at fre-

quencies f = n/to. At these points, S,,(f) drops to about

1/p of the value predicted by the Markov modulation.

The linear sequence spectrum is

+_

,,,,,,,.r. ( .)

"-p
fl,-_¢o

(61)

If the period is long, this appears essentially to be the

spectrum of a Markov process with two equally likely
states.

2. Equiphase Modulation of Sinusoids

Here we ch_ t) to be the same as those in

Markov equiphase-modulation; i.e.,

,,,,,,=,,.,(.o,
,rll,,

.,,-To

(e2)

After completing the calculations, we arrive at

, ,r,,,,c-@),oq
" ")- (-+--o)L(_--_-),oj

× + Z ,(, "+'
-::£ ( ',)p af-To

K,-_OO

(_)

Comparing this formula with that of the corresponding

Markov process, one sees that, except at frequencies

which are multiples of 1�to, the average of adjacent

spikes in the linear-sequence spectrum gives the same

general shape as that of the Markov. To a frequency

analyzer whose bandwidth of resolution is insuflqcient to

distinguish individual lines, the linear spectrum appears
to have a Markovian character.

At frequencies which are multiples of l/t0, S,,(n/to) is

smaller than the spikes surrounding it by a factor of 1/p.

This is the same behavior exhibited by binary modula-

tion of these frequencies.

One thing important to note at this point is that the

correlation of a is not Markovian for b > 2, because cer-

tain states become highly correlated at delays less than

the period of a (Fig. 6). However, by proper choice of

modulating waveform, this apparent difficulty does not

give anomalous results.

SEQUENCE ¢1= (El '"¢'1 'E2 'El 'EO'E$'E3'EI'E3'EO'Et'L='2'E3'-'r2'EO }

I'11,r221 f33

_15 1/15 /

5 10 15

m

roo

5 I0 15

m

tit,% ,rt3

/'21,/'13, t3t

1/15 4/_

5 10 15

_1/15 ///_15

I
5

/R

I0 15

/'R

1/15

5 10 15

m

Fig. 6. State correlations of the 2-sequence over

GF (4) with period 15
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F. Discussion of Modulation Spectra

We have shown that random and random-like se-

quences may modulate carriers in such a way that the
concentrations of power at specific frequencies are not

apparent. This is important when the receiver employs a

phase-locked loop (Ref. 21), for then the loop could

possibly lock onto an undesired frequency.

We have also seen that by choosing the correlation

function of the periodic sequence to be similar to that

of the random one, the two spectra resemble each other,

sometimes with amazing accuracy. Random sequences

are generally easier to work with mathematically, because

statistical averaging is usually easier than time averaging.

Hence, by proper periodic modulation, we can use statis-

tical means to compute spectra with little loss in accuracy.

Although no exact formulas have been calculated for

slope-preserving linear-sequence processes, experiments
have shown that the measured linear sequence spectra

are extremely well approximated by a Markov envelope

(Fig. 7). Although the spectra here ultimately decay at
the same rate as the unrestricted transition processes,

larger, more pronounced peaks located near fundamental

frequencies of hi(t) occur. These processes are then

doubly important: first, such processes may be easier to

mechanize by reason of smoother transition between
states, and, second, it is possible to create a broad-band

spectrum which falls off rapidly outside the band. To a

transmitter, this means that power is not wasted outside
the desired band.
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III. DETECTION OF SEQUENCE-MODULATED SIGNALS

A. Description of Detection Process

Suppose that a signal x(t), generated by modulating a

carrier set {hi(t)} by a sequence a having period p, is
sent through a simple continuous channel with additive

white Gaussian noise of zero mean, as shown in Fig. 8.

The time series g(t) presented to the receiver is

y(t) = x(t - + n(t) (04)

Here we have assumed no attenuation in the channel;

we may do this without loss in generality by assuming

that the receiver is capable of amplifying y(t) to recover

any channel loss. The noise is, of course, also amplified,
and this must be taken into account.

The receiver knows the statistics of the noise, bounds

on the time delay r (r assumed constant), the sequence

a, except for its phase, the carrier set {h_(t)}, and the

modulating scheme [i.e., the correspondence e_ _ h_ (t) ].
The receiver is to estimate either the unknown phase

of a, or the cha_elay, or both.

x,,, iT. 0E..YT .,.,

I
NOISE n(t)

Fig. 8. The continuous channel

If _ is known, the channel is telemetry using a cyclic

code a; ff the receiver knows the transmitted phase of a,
the transmitter-receiver is a coded, continuous radar

device measuring the "length" r of the channel. If both

and the phase of a are unknown, with

1-= kto + _'o, (0< ro < to) (65)

then the phase of a at the receiver is its initial phase plus

k additional units delay. By transmitting a carrier modu-

lated by the clock rate to, ro can be measured by a phase-

locked receiver (Ref. 22). Once ro is found, the receiver

"locks" this quantity out of the measurement on r. We

then only need consider cases with r = kto.

We will assume, then, for the remainder of the present
discussion that such an initial synchronization or rood-

ulation lock is in effect. The receiver we investigate is

one which estimates the phase of a as if it were for a

radar system. Then we can make suitable interpretation

to include the telemetry channel or the telemetry plus

radar device (but the latter requires additional informa-

tion, time-sharing of the device, or some such scheme to

separate the phase of a from the channel delay).

Both the receiver and the modulating periodic sequence

a are to be chosen to minimize the a poster/or/probability

of error in estimating the unknown phase of a. It is a
well known fact that the receiver in such cases is a cor-

relating device ( Fig. 9 ); but for the sake of completeness,
we will show the form the correlations must take and the

properties which a must have. The argument is not a

rigorous one but indicates the form of the solution much

more easily than would more mathematical treatments

( Bef. 28, 24).

y(/)

DECISION --'''''*'OUTPUT

Fig. 9. Optimum receiver for the white-noise

Gaussian channel

We assume that r = kto, so y(t) = x(t-kto) + n(t), and

that y(t) may be observed for one period pto of x(t).

To minimize the probability of error, we must choose our

estimate m so as to maximize the conditional probability

er { k = m [y (t); 0 <_ t < pto }. Then the probability of
error, given by

P, = _ Pr {k = fly(t); O< t < pto} (66)
r#fft

is surely a minimum.

13
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By Bayes' rule (Ref. 25), we can reverse the condi-

tional relationship.

Pr {k = m]y(t)}Pr {y(t)} --Pr {y(t)[k = m}Pr {k = m}

The likelihood ratio between possibilities k = m and k = n
is

/'r {k = rely(t)) _ /'r{k = m}er {y(t) k = m)
t'r(k=rlV(t)) er(k=r} Pr(v(t) k = r)

(es)

Considering all admissible candidates for the phase of a
equally likely, we reduce the problem to that of choos-
ing m so as to minimize the probability that n(t) was

the corrupting influence in the channel giving rise to y(t)
when x(t-kto) @as sent. On the condition that k = m,

n(t) = v(t) -x(t -,_o) (_)

It can be shown (Re{. _) that the density of a pax-
ticular sample function, n(t), of white Gaussian noise
lasting from time 0 to pro may be expressed as

r 1 l'pt, -I

Prd.nsttx {n(t)} -b-lexpL- n'(t)dtJ(70)

where No�2 is the (double-sided) spectral density of the
noise, and J is a constant not dependent on n(t). (The

space on which this probability density exists must be
carefully defined, but need not concern us here. )

Hence, ff Pr {k = rely(t))> er {k = fly(t)} for
allr_ m,

e, {k = rly(t)}
Pr {k = rely(t)} < 1 (71)

and, as a result,

F I f"

° L Jo [y(')ix(, dt

['" ]- [_(t)-x(t -rto)]'dt
JO

<1

(72)

Simplifying the exponent and taking logarithms of both
sides leads to a sufficient statistical criterion: estimate

k = m whenever, for all r _ m,

fo f pt."" y(t) x(t-mto) dt >Jo y(t) x(t-rto) dt (73)

B. Error Probability and Optimal Signals

For convenience, we may consider that _ = O. By mak-
ing the substitution y(t) = x(t) + n(t), and by using
the periodicity of x(t) in the equation above, the deci-
sion criterion becomes: choose the estimate m such that

for all r_C_m,

R_ (into) + v, > a,, (rto)+ v_ (74)

where the noise v, is a zero-mean, Gaussian random
variable

1 fP"
,, = -_j, n(t) x(t-no) at (7s)

The noise covariances _ = C (v,v.) are, of course, given
by

N,
= T R,, [(m -r)to] (76)

If the decision was correct, then m = 0, and the vector

• = (,o,,,, , ,,,)" (77)

must have been in the region cut out by

S - n,.(rto)> "r - ,o S = n,,(0) (78)

for each non-zero admissible candidate rto for the phase_
When all of the p values of r are admissible, the error

probability is given by

(79)
p(vo, vl ..... vp-l ) dvo dvl ... dvp-_

It is not dear from Eq. (79) what the optimal cor-
relation function for x(t) would be, since R,,(r) appears

in both p(v) and the integral limits. In fact, a complete
solution to this problem is not known. It is conjectured
that x(t) should be chosen to have its maximum out-of-
phase correlation minimized, and there are several argu-
ments which tend to bear this out.

From the form of detection criterion, we might at first
think that, for optimal distinguishability, we should dearly
want large separations between the in-phase and out-of-
phase correlations. Then, S - P,.,(rt, ), we would reason,
would be more likely to be bigger than v, - v,. This

reasoning is not necessarily valid, because the noise term
v, - vo has variance

_{(v,- ,o)},= No[S - e_(no)] (80)
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which increases with separation. It is this trade-off be-

tween separation and noise variance that causes the diffi-

culty in finding the optimal correlation function, and it is

strongly reflected in the integral expression for Pc.

Perhaps the strongest result at present is presented in

Ref. 27, which states that ff there exists a region of signal-

to-noise over which a unique optimal code of M signals

exists, and ff the dimensionality of the signal space is at

least M-1, then the signals, envisaged as points in signal

space, should be placed at the vertices of an (M-1 )-

dimension simp/ex; that is, a polyhedron, each vertex of

which is equally (and maximally) distant from every
other vertex." The common value of cross-correlation is

- 1/( M- 1 ) (normalized). The problem of a signal space

of smaller dimensionality than M- 1 has not been solved

in general. Whenever an ( M - 1 )-degree simplex is cyclic,

the signal corresponding to it has the optimum correlation.

For all values of S/No, it is further known ( Bef. 28, 29)

that the simplex correlations provide a local optimum.

That is, Pc, as a function of the correlation values (as-

sumed to be independent variables), takes on a relative

minimum when e_,.h ,=u,'elation is equal to the simplex
value.

By differentiation, it can be shown that Pe is a mono-

tonic nondecreasing function of each correlation as well

as the signal-to-noise ratio.

_e----_"> 0 (81)

where _ is either a ( normalized ) correlation or the signal-

to-noise ratio. This, too, hints that one should choose x(t)

to minimize the out-of-phase correlations, for then P,

would surely be minimum also. Of course, all the corre-

lations are not independent, so this reasoning is not really
valid either but indicates what would be desirable if a

su_icient degree of freedom were available. We can show

that if all correlations are taken to be equal, then the

best value to select for this correlation is the simplex value.

This is done easily with a result of Kotelnikov ( Ref. 80) :

let P,(X, p) be the probability of error for a code, all of

whose cross-correlations are equal to p < 1, at a signal-
to-noise ratio A; then,

P, .p = e.(_,0) (89)

• The signal-to-noise restriction was later removed by A. V. Bala-
krishnan in his paper, "A Proof That the Regular Simplex Coding
Is Optimum at Every Signal-to-Noise Ratio." (Work done under
JFL Contract JPL-SI-320; P2-17064. )

Immediately, we see that the larger I-, becomes, the

smaller the effective signal-to-noise ratio becomes, and by

the monotoneness of Pc, we reason that 1-p should be as

large as possible. Hence, p should be the simplex value
for such codes.

The foregoing discussion was presented to justify, to

some extent, the assumption which we shall make about

the type of correlation which we desire x(t) to have, and

this is that it is desirable for x(t) to have the lowest

possible out-of-phase correlation.

As we shall see, it is not always possible to achieve a

simplex correlation, especially when a is a binary sequence

with fixed period. Then, we not only desire that the x(t)

have its maximum out-of-phase correlation minimized but
also that the number of times this maximum is attained

be minimized. This is an heuristic optimizing necessity,

borne out by considering bounds on Pc. Applying the

mean-value theorem (Ref. 31 ), one can show that

P, [A,R..(m)] _ e(A, Rmu) (83)

This indicates that the error probability, at a given

signal-to-noise ratio, is improved if the correlation is not

equal to the maximum everywhere, By the monotoneness

of P, with each correlation, we reason that the fewer

times Rm._ is attained, the better signal we will have.

C. Perturbed Additive Gaussian Channels

Suppose we restrict ourselves, for the moment, to

binary sequence modulation of an antipodal sinusoidal

set. We can implement this mathematically either by

amplitude modulation

x(t) = a(t) sin o,ot (84)

or by phase modulation ___90 deg

x(t) = sin [_ot +2a(t) 1 (85)

The series a ( t ) is a binary ( ± 1 ) sequence

a(t) = _ (8_ - 8_) u(t -nto) (86)
n=-oo

where u(t) is the unit pulse from 0 to to.

In the channel, white Gaussian noise is added, as in

preceding Sections, and, in addition, the phase of x(t) is

perturbed by an additive noise, q,(t).

[ - ]y(t) = sin ,oot + -g a(t) + _(t) + n(t) (87)
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Such a received signal would result if the sine-wave

generator had a phase instability or if the medium were

randomly varying.

If _(t) were known, the ideal receiver would correlate

y(t) against sin [_o0t + (_/2)a(t - mto) + _(t)], compar-
ing the shift of a(t) to find a maximum. Not knowing

(t), the receiver estimates the noise, say, as _o (t). Now,
define

_(m): 1 f"q I ,r7o.lo y(t) sin _o t + Ta(t-mto)

+ Co(t)] dt

- 2 pto cos a(t)- a(t-mto)

+ _(t) - ¢o(t) ]at (88)

1 1 Jo cos 2,at+ [a(t)+a(t-mto)]2 pto

+ _/(t) + _,,(t)]dt

+ +  o to)1 at+ "_oJo n(t) sin

The second of these integrals can be omitted with little

loss in error probability since it represents the integral
of a high-frequency sinusoid. We thus redefine '_(m) to

exclude this term, and we drop the factor of ½ by

normalizing.

A(m) = l--_-fPta(t) a(t-mto)
pto Jo (89)

× cos [_(t)- _o(t)] at + v.

We can estimate t_(t) by inserting a phase-locked loop

in the receiver to get a fairly good approximation, ¢o(t).

Consequently, our test statistic will be something like

A(m) = OR,,(mto) + v_ (90)

where 8 is a random variable indicating the degree of

lock, presumably slowly varying and positive if pto is long.

The additive noise channel with phase noise is thus

really different from the additive noise channel without

phase noise only by a change in the signal-to-noise ratio.

The detection schemes are the same, and coding for both

channels requires sequences with minimal out-of-phase
correlations.

D. Correlation Time as a Function

of Distinguishability

We now wish to compare the integration time T re-

quired to give a constant probability of error as a function

of correlation separation. Suppose a unit-power signal

x( t ) is transmitted, y( t ) = x( t-m ) + n( t ) is received,

and the receiver correlates y(t) against a unit-power

waveform z(t) for a time T. The output A(m, T) of

the integrator is then

A(m, T) =fo r

=for

y(t) z(t) dt

i"x(t-m) z(t) at + n(t) z(t) _

= TC,,(m) + N(T) (91)

The noise term at the termination of integration has
variance

1"yo•_ = C(N') = No _(t -s) z(t) z(s) dtds-T
(92)

No frz_(t)dt= 1
= 23o TN°T

Let ,',C_, represent the distinguishability of the normal-

ized cross-correlation values C_ (m) :

±C_ = 1C=(m') - C,,(m") I (98)

where Ic=(m')l> tC=(m) I for all m, and m" is chosen
to minimize the difference above. The distinguishability-

to-noise ratio, as we have seen, fixes the error probability;

that is, two correlation detectors will have approximately

the same probability of error if they have the same

distinguishability-to-noise ratio, _'_/cr_,,

-,xA_ T_C,, 2T

As a result, the integration time for a given probability

of error (more precisely, for a given _---_/_._.) increases as

the inverse square of distinguishability of cross-correla-
tion values.

No( (gs)
T =-'_-k _r_/ .

The ratio of the times T' and T for two such systems is,

hence,

T,_( AC.V
r \ aC,.,,,, ] (96)
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E. Minimum Acquisition-Time Receivers

The optimal receivers we have considered up to this

point minimize the probability of error for a given detec-

tion time or, analogously, the detection time for a given

probability of error. It consists of filters (or correlators)

matched to each possible transmitted signal, and this

generally requires a large amount of equipment. Some-
times, however, we are limited to a certain amount of

equipment or receiver complexity, and we must operate

on the incoming signal accordingly.

For example, suppose that a sequence a is transmitted

in a continuous radar situation, and we wish to "acquire,"

or detect, the delayed received replica of a. By using

p eorrelators, we are able to estimate the received shift

of a with a certain probability of error after integrating

for, say, T see. From the foregoing discussion, this is the

least T giving this probability of error. However, ff we

were limited to using one correlator in the receiver, we

would have to correlate the incoming signal serially

against every phaseshfft of a, which requires pT see to

achieve the same probability of error. There is thus a

trade-off betw_r complexity and acquisition
time which we can_r_elate by

time for a one-correlator receiver to acquire a
T,cq = number of correlators in receiver (.97)

Now, as an alternative, let us build a receiver which

cross-correlates a against several locally generated se-

quences; say, el, e2, ..., e,. When a and e_ are cross-

correlated for T' see, RHi(m ) will have maximum values

at multiples of the highest common factor v_ of a and e_;

denoting the period of e_ as u_, these are

v, = (p,u,) (98)

Knowing the vector m = (ma, m2, ..., m,,) containing

the delays m_ at which. R.._(m) are maximum, we want
to be able to decide the most probable shift of a uniquely.

The number of these vectors m must thus be greater than

the number of phases of a. Each m_ can be reduced

modulo v_ without loss in distinguishability, and we may

assume then that each m_ is the least positive integer giving

the maximum R.._(m). But the number of distinct pairs

(m_, mj) of maximal indications is the least common

cycle length [v_, vii of the two cross-correlations R.o_(m),

R.oj(m). Also, ff v_ were to divide [v_, vii, no informa-
tion would be carried in m_. We can exclude such cases

and extend, by induction, to

p < [vl, v_, ..., v,] (99)

With one integrator observing T' seconds per step, the

time required serially to perform all correlations of a

with the ci, phase by phase and sequence by sequence,

is vl + v2 + ... + v,)T'. We choose T' sut_cienfly long
that the confidence limits in this scheme are the same as

the previous ones using integration time T. The acquisi-

tion ratio, defined as

T',o, _ (vl + v: + ... + v,)T'

T,c, pT
(100)

represents the relative saving (ff any) between the two

schemes, each with the same specified number of inte-

grators.

If it were possible to choose e_, n, and T' in such a way

that the ratio is less than unity, the alternate scheme

would prove a more desirable receiver in that for a given

receiver complexity and error probability, the total time

to acquire is less by the second method. We will not only

show that this is possible, but we will also give a way

by which a great saving can be achieved.

First, T' depends on the distinguishability among the

R.°_(m) at various m. If, for each n, the e_ and a are
chosen in some systematic manner, T' is a function of

n and T, exclusively.

Second, the period of u_ of e_ cannot be relatively prime

to p, for if it were, Pt.ei(m) would be the same for all m
because v_ = (ul, p). By Euclid's algorithm, there exist

positive integers s and t (0 _< t < p) with the property
that

sp + t = [vl, v2, ..., v,] ( 101 )

It is possible for each v_ to divide p only ff t = 0 and
s--1.

p = [v_, vz ..... v,] (102)

To minimize the acquisition ratio for a fixed n, we

minimize (v_ + ... + v,), keeping p = [v, ..., v,] con-

stant. Recall that for each i and i, v_ and vj must have

been chosen to have some non-unity relative prime factors.

There will always exist v_, i = 1, ..., n, relatively

prime in pairs (assuming p :f= v_ v2... v,) with

p = v" o_ ... v" (108)

17
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• ' ) < (v, + o, + ... + v,).such that (v_ + v_ + ... +v_

To demonstrate that this is possible, we proceed as fol-

lows: stepwise, consider all pairs v_, vj, and arbitrarily

set v_ = v_ and v_ = vj/(v_, vj) at each step. The final

set {v_ } is relatively prime and v_ v'..., v, = p, with
either v_<v_ or v_ = vt. Hence,(va + v_ + ...+v,)

'+...+ ,).> (v' + v_ v,

Since we wish to select v_ to minimize the acquisition

ratio, we must let the v_ be relatively prime, for other-

wise we could follow the procedure above to pick a rela-

tively prime set .of v; giving a smaller acquisition ratio.

It is a well known result (Ref. 32) that (vl + ... + v,)

is minimized, relative to the constraint that p = vt vs... v,,

by choosing each v_ equal to"_/p-:.Of course,the distinct-

ness of each vl makes thisimpossible.We must, in con-

solation,group the v_as closeto_ as possible,keeping

them relatively prime. We now have a strong reason for

finding optimum cross-correlating sequences of all lengths.

For a minimum acquisition-time receiver, we seek n

well chosen sequences el, i = 1, 2, ..., n, whose cross-

correlations R,_i(m ) with a have periods vl which are
relatively prime and close to'xf--p and which have a max-

imum distinguishability between phases. Over all such

schemes, we then choose n to further minimize the ac-

quisition ratio

1-___T'(n)
T',c, ___n p _ ( 104 )
T,_ T

We have indicated that T' is dependent only on n

(and T) when there is a systematic way of choosing e_,

e_..... e,, and a for each n, We investigate, in Part VIII,

acquisition of a by taking a to be the optimal Boolean

function of the "component" sequences e,, ez ..... e_.

18



JPL TECHNICAL REPORT NO. 32-388

IV. EQUIVALENCE CLASSES OF SEQUENCES

Fine (Ref. 33), in 1957, and Gilbert and Riordan (Ref.

34), in 1961, treated the following problem: If two se-

quences a and a' can be made alike by either a shift in

origin or a permutation of the states e_, or both, how

many distinct (inequivalent) sequences or symmetry

types of sequences are there? The solution to this prob-

lem, the so-called "necklace" problem (Ref. 35), is

important because it reveals the number of different

sequence generators which can be implemented in a

given period. We are not interested in sequence gener-

ators as such, but the method used to count the equiva-

lence classes, namely P61ya's formula (Ref. 36, 37), can

be applied to a problem of specific importance to us.

In Part V, it will be shown that certain transforma-

tions of sequences do not change the values which the

correlation function assumes, but only the order in which

these values appear. It is of interest, then, to determine

the number of sequences which are distinct under such

transformations, for then we need be able to synthesize

only one seque-,.,_ t 1.... d, equivalence class.

Let a = {a,} be a cyclic sequence of length L (L may
be a multiple of the period), each of whose elements a,

may assume one of b values. There are b '_ such sequences.

Define the operator g_on {a,} by

g_ {a.} = {a_+,} (105)

Obviously, k, t, and kn + t may be treated as integers

modulo L because the sequences involved are cyclic.
Define the set

_7= {g_ : (k,L)= 1;t,k(modL)} (108)

It is easily shown that L7 is a group of order L4_(L) [4_ is

Euler's totient function (Ref. 38)]. This set _7 of permu-

tations forming a group of operators on the domain of

cyclic sequences is called an affine group (Ref. 39). By

applying P61ya's formula, the number of equivalence

classes of sequences under this group can thus be
obtained.

A. Properties of the Affine Group _7

Two sequences a and a' are equivalent under _7 if there

exists a gt in L7 such that g_a = a'. The number of se-

quences a with the property that, given gL, g[ a = a, is

denoted

,.q( g/, ) = number of sequences invariant under g [

It is obvious that

g_ {a,} = {a,} if and only if a, = a,k+,

The constraints made upon a sequence by invariance

under g_ are that a,, = a, whenever n and m are in the

same cycle of the decomposition of the integers modulo

L by the permutation

n --->nk + t (107)

The first such cycle of g_ is [0, t, t(k + 1) ..... t(k ¢'1 +

.°. + 1)], where q is chosen so that it is the least positive

integer such that t(k q + /t_-I + ... + 1) = 0. If v is the

least integer modulo L not in this cycle, then we form

the second cycle [v, vk + t, vk 2 + t(k + 11 .... vlc "-_ +

t(/d -2 + ... + 1)], and so on, until every integer from 0

to L - 1 is placed in a cycle. We call such a disjoint decom-

position of L the cycles of the permutation g_, or the

equivalence classes or orbits of integers under the rela-

tion g_,, etc., as we choose. Denote the number of such

classes by C ( k, t).

C (k, t) = number of cycles in decomposition of

integers mod L by gL (108)

For each k relatively prime to L, there is some least

positive integer q such that k a == l(modulo L). This in-

teger Ek(L) is the exponent, or index, of k modulo L.

LEMMA: q = Ek(L) if and only if q is the least in-

teger such that 1 + k + ... + /d -_ _ 0 (modulo L/(L,

k - 1)),1 k =I=1. I

Proof: Assume q = Ek(L), and let d = (L, k - 1). Then,

q is the least integer such that, for some m,

- 1 : (k - l)(k ¢'x + ... + I) : mL_O(modL)

(109)

But (L/d, _k - 1)/d) = 1; hence, ff it is true that

[(k - 1)/d] (k ¢-1 + ... + 1) _ 0(mod L/d), then it must

also be true that k¢-1 + ... + 1 -_- 0(mod L/d). This

proves the first half of the lemma.

Assume now that q is the least integer such that/d -t +

... + 1 E 0 (rood L/d). Since (k - 1)/d is relatively prime

to L/d, q is also the least integer such that [(k - 1)/d]

(k *-_ + ... + 1) 10(modL/d) : mL/d, for somem.

Therefore _ - 1 = mL, and q is the exponent of k.
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We now define a concept similar to the exponent of k.

Define _(k, L) to be the least integer x such that

1 + k + ... + k _-l_0(mod L) (110)

A relatively simple lemma follows.

LEMMA: Tl(k, L/(L, k-I) ) = E_(L), k _ 1.

Proof: _(k, L/(L, k-l) ) = q means that q is the least

integer such that 1 + k + ... + kq-x _ 0(rood L/(L,

k - 1)) ; hence, q is the exponent of k.

The main result involving _ ( k, L ) is the following:

THEOREM:

 7(k, r,) =

ffk=l

ffkv_l

Proof: 1 + k + ... + k r¢-1_ 0(mod L) implies k s - 1

0(mod L), hence that Ek(L) divides N; that is, N =

rE_(L) for some r, where if N = _ (k, L), r is the least such

integer. But then, modulo L, 1 + ... + k rc-t _ r(1 +

• .. + kS,(L_-')= nL, for some n. Let v = (L, 1 + ... +

kB,(L_-_).Ifk = 1, v = L; and if k -Ta 1, v = (L,(k_, (L_

- 1)/(k - 1)).

Then,

r(l+k+ ... +kg. (b)-t) = Ln- (111)
O O

Since L/v and (1 + ... + kg_(L_-_)/o are relatively prime,

r is the least non-zero integer such that

r -= 0 (mod -_-) (112)

Therefore, r = L/v, and N = (L/v) Et (L).

THEOREM: The number of elements in the cycle of

g_ containing the element u is

t, t)) (113)_l(k, (L,u(k-1) +

Proof: Let the cycle containing u have x elements•

Then, x is the least integer such that

u/,Y + t(k _-x + ... + 1)_---u(mod L) (114)

That is, [u(k - 1) + t] (k_-_ + ... + 1) = nL, for some

n. Let v = (L, u(k - 1) + t). Then, x is the least integer
such that

k_-,+...+l_0(mod L) (115)

Therefore, x = _(k, L/v).

As a special consequence of this theorem, we see that

the number of elements in each cycle divides L.

For convenience, let us denote the number of elements

in the cycle of g_ to which u belongs by

( L )H(u; k, t) = k, (L, u(k - 1) + t)

= [number of elements in the

cycle of g_ to which u belongs]

(116)

We readily compute the number of cycles C (k, t) in the

decomposition of g_ .

L-1

1
COROLLARY: C (k, t) = _ H(u; k,t)

14=0

Proof: Let cu = (Ul, u2 ..... U(- } be a set of represent-
atives of the cycles of g[, each u, from a different cycle.

Then,

b-1 C 11 - H(u_;k,t) H(u,;k,t)" (117)= H(ui'k,t) .=

= C(k, t)

B. Counting the Equivalence Classes

We now apply the Pblya formula: Let G be a finite

group of operators on a finite set S. The number of

equivalence classes Q established in S by _7 is given by

Q = I 1-'  J(g) (118)

where I_1 is the order of _7.

THEOREM: The number Q (L) of equivalence classes
of sequences under G is

2O
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L-1 L-1

Q(L) - c _(L) --
(k,L)=l

wh_e

b C {k,t)

H(u; k, t) = _( k,

_n(_, d) =

d

d Ek(d)/(d,

L = cyclic length of sequence

¢ = Euler's totient function

b = number of sequence states

r.- 1

C (k, t) = Z H-x (u; k, t), the number of
cycles of gL

" )(L,,4k - 1) + ¢)

E_ (d) = least integer such that k s -1 r_

0 (mod d)

(119)

Proof: P61ya's formula, in this case, reads

1

Q(r.)- r._TL_,._ 3(g_)

g_E,3

(1_o)

To compute _q(g| ), any sequence such that a. = a.

whenever n and rnare inthe same cycleof g_,isleftin-

variantby gl. Hence, _q(g_) = b c _''LTherefore,

1 _ b c ,k,,_ (121)Q(L)- r.÷(L)
k0t

COROLLARY: If (L, k - i) divides t, then,

c (_ t) = _ _(d)

Proof: If (L, k - 1) divides t, there exists a uo such that

Uo(k - 1) + t u 0(mod L). The mapping o--.-_o + Uo of the

integers modulo L onto itself is 1 to 1, and (v + uo)(k - 1)

+ t--_ v(k - 1). Then, denote d = (L, v), so that

[ L ]H(v + uo;/c,t) = _ k,(L,v(k _ 1 )

I L/d 7=
(lSS)

As v ranges over all the residues modulo L, d passes

through every divisor of L, as does L/d. Hence,

C(k,L) = _M(d) Z M(LId)Ek( d) = E_( L/d) (128)
41r, ,qt,

where M(q) is the number of residue classes t) modulo

L such that L/(L, v) = q; v must be such that (L, v) =

L/q = d. Thus, v = rd, where (r, L ) = 1 and rd = rL/q

< L, or r < q. Hence, M(q) is the number of integers

less than q, relatively prime to q; that is, M(q) = 4_(q).

This last corollary establishes the fact that any time

(L, k -1) divides t, the number of cycles of gL is the
same as the number of cycles of _.

LEMMA: As a function of x, x(k-1) + t takes on

L/(L, k - 1) values as x = 0, 1, ..., L - 1, each (L, k - 1)
times.

Pmofix(k - 1) + tffify(k - 1) + tmeansthatx-,y

modulo LI(L, k -- 1). Hence, 1, 2, ..., LI(L, k -- 1) are

the distinct values, each assumed (L, k -- I) limes.

By this lemma, the task of computing C (k, t) is some-
what lessened:

b

(_-l,r.)

C(k,t) = (L,k-1) _ H -_ (u;k,t) (124)

In the special case that L is prime, k- 1 is relatively

prime to L for all k, (k, L) = 1, except k = 1. For k = 1,

_I[1, L/(L,t)] = H(u; 1, t) = L/(L, t).

*{Q(r.) = L (L-l) _ + b(L-1)

___ (125)

+ bEt_,t,)=x_ ba'-x)/i'(_') }

The values of Q(L) for the first few values of L are given
in Table 1.

Although the above formula presents an explicit way

of expressing Q(L) in terms of elementary functions, it
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Table 1. Number of Inequivalent sequences of length L,

Q(L), and of period L, _(L)

s

6

7

I

9

I0

I1

12

13

14

15

16

17

18

19

20

30

31

2

3

4

6

6

13

I0

24

22

45

30

]sl

74

245

368

693

s23

2,637

1,610

7,341

4,.500,267

2,311,470

2

I

2

3

4

8

8

18

18

38

28

142

72

234

360

669

520

2°606

1,40|

7,293

4,499,8.52

2,311,468

involves upwards of L'_(L) calculations, which, if done
without an electronic computer, can become a long and
tedious process. It seems that a simpler way to determine

Q(L) _ by
b--I /,-1

1Q('): Z Z
t.e bx

(h,l,).z

where C(k, t) is computed by looking directly at the de-
compositions of L by the permutation n-* nk + t for
each desired k, t.

The number Q(L) of sequences with period exactly L
cam be fvund by applying the MGbius inversion formula

(l_d. 40):

where t_(d) m the MGhius function: _(1) = 1, t_(d) =
(-1)" if d _ the product d r d_tinct pr_,nes, _,(d) = 0
oth_=wi_.

Both Q(L) and Q(L) are given in Table 1 and plotted

in Fig. 10. From the Figure, one may note that Q ( L ) is

roughly exponential in L. Since C(I, O) = L and C(k, t)

< L for every pair k, t, it follows that

b• bL

L'_ < t_r.)< Q(r.)< b_ (12s)

Then, for any e > O,there exists on Lo such that for every
L>Lo

b"-"' < Q(L)< b• (129)

tooo

- I00

!'
,
o 2 4 I

0(L)

_rcz)
APPtROXIMATE SLOPE LINe

• 2
/

II tO 12 14 t6 m 20 22

L

Fig. 10. Numbers of inequivalent sequences of

length L, Q ILl and of period L, _ ILl
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It should be pointed out that it is possible for two

sequences to have the same autocorrelation function and

be in different equivalence classes. This is the case, for

example, for the binary linear and Legendre sequences

of period 31. Hence, even though equivalence was de-
fined to leave the correlation properties of sequences in-

variant, these classes are insufficient to characterize the

correlation types uniquely.

V. THE CYCUC SEQUENCE CORRELATION FUNCTION

A. General Correlation Properties

A cyclic sequence (or merely a sequence) a = (a_) is

a mapping of the integers onto b objects or states,

el, e2, ..., eb, for which there exists a positive integer L,

called a cycle length, such that for all n,

= (130)
The least positi_h L is the period p.

We have defined a correlation of a sequence-modulated

signal, and we have defined the correlation between

states of a sequence.

There are several ways to define what we might call

a "correlation" function on a sequence. We choose to

define the correlation of (an} relative to a function: Let
f be a real or complex-valued function on the states.

[(a) =/{a.} = {/(a.)} (181)

The (unnormalized) autocorrelation of a = {a_ } relative
to f is

L

RI,., (m) = _f(a,)f*(a,,M) (132)
n=l

The (unnormalized) cross-correlation of a = {am} and e

= {Cn} relative to f and g is similarly defined.

lr

RI,.,,,<.) (m) = _f(a,) g*(c,..) (183)
n=l

where V = [L(a), L(e)], the least common multiple of
the cyclic lengths of a and e. Whenever we deal with only

one sequence, we shall quite frequently omit this fact

from the notation and merely write R1(m), Rio(m). We
shall also have occasion to use normalized correlations.

R,(mL
C1(m)- L(a)

C1(._,o_._ (m) = a1(.),e(._ (m)
V

(134)

As an example, let 8_ (i = 1 .... , b) be projective func-

tions; that is,

8' (_) = o_e_e_ = 8 (e.a.) (la5)

The set of images of a under these projections completely

specifies a, and vice-versa. The state correlations, or cor-

relations of projections defined earlier, are then merely

r_5 (m) = C6i ' aj (m) (136)

These are put into a matrix in the obvious way,

rim ) = [r,t(m)]; m = 1 .... ,L (137)

to form the correlation matrix of the sequence.

In Part II, we showed that the spectral density of a

sequence whose states are waveforms of the same basic
time durations is directly related to this matrix function

and the Fourier transforms of the sequence states. Also,

the correlation of a relative to any function f can be ex-

pressed as a linear combination of the elements of r(m).

Let 8_ and 8_ be two projections of a and define cor-

responding p X p circulants A _ and A_:

a' = [_,. ]

=8'_.

Similarly,for the element r_k(m)in r(m), define the cir_

culant

23
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r,_ : [r,_ (r - s)] (139)

Now, A t, A _, and r_k are related by

(A_)r A_ = r_ (140)

as may be verified by routine matrix multiplication.

Hence, ff r_ is given, and if ti _ is nonsingular, we can

find A_ immediately:

a k -- (a') -r r,k (141)

Circulants are a form of a group-ring algebra which we
shall have occasion to use in Part VI.

Equation (141) states that ff the correlation matrix r(m),
m = 1..... L, and one of the projections, whose circu-

lant is nonsingular, are given, then all projections can

be found, and from these a sequence having r(m) and
its correlation matrix can be made.

Therefore, in order to find a sequence having a given

correlation matrix, it is suf_cient to be able to find a single

binary projection (assuming that one exists whose circu-

lant is nonsingular), given its autocorrelation function.

Since the spectral density of a sequential process is

directly related to r(m), since the correlation of a relative

to any function is a linear combination of the terms in

r(m), and since a sequence having r(m) as its correla-

tion matrix involves finding only a single projection, we

see that a study of binary sequences is not restrictive.

Therefore, for the remainder of this Report, we will assume

that the functions on sequence states are binary.

There is an obvious transformation between binary

(0, 1) sequences and binary (±1) sequences, and like-
wise, there is one between their correlation functions.

Hence, there is no loss in generality in speaking of binary

sequences either as (0, 1) or (±1) sequences. As a
matter of convention, we will denote functions on a

binary sequence, for the most part, by lower-case Greek
letters. For example, we will write a for a(a), with

_. = _(a.)
(142)

a_ --- -+-1

When we have occasion to use binary (0, 1) sequences,

we modify the notation: a = _(a) with

_,,= a(a.)

= (--1);, (148)

The second part of this last Equation can also be written

explicitly for _, as

a,, - 1 - _ (144)
2

B. Correlation of Binary Sequences

In the remainder of this Part, we will deal with the

correlation function of a binary ( _ 1 ) sequence without

regard to the states which produced the (±1) terms.

We treat a more general case in Part VIII, in which

the sequence states are binary vectors.

Let a= {a,} denote a binary (_1) sequence of
period p. Its autocorrelation functions are, per period,

P

R,(m) = _ a_a,_

1
Co(m) = -ff

_t=l

a_ an+m

(145)

Obviously, R,( m ) = R,( p -m ), for

11

= __. (146)

p-m

= S a.,. o_ = R.(rn)

and trivially, R,(0)= p. The difference between the

number of one's and the number of minus one's, per

period, will be called the imbalance Do of a.

P

D_=Sa,
lt=l

Whenever ] Do I -< 1, a is said to be balanced.

LEMMA: m) =D__.
tllal

(147)
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Proof: We merely apply definitions of B, (m) and Do:

p P P

tl_. l 111,=1 tt= l

= D:

C_ Cl.n.cm

P P

It,m1 111=1
(148)

The next theorem limits the values which Ro (m) assumes

to numbers congruent to p modulo 4.

THEOREM: p - Ra(m) is divisible by 4 for all m.

Proof: We use Eq. (144) to relate Ra(m ) to Ro(m) :

p-I p-1

tt=O _0

p-x

= _ (1 -- 2_ - 2_+. + 4&,, _...) (149)
'n,=O

= p - 4k + 4R;(m)

When this is rearranged_._._,since/Z,(m) is always an integer,

/9 -- Ro ( m ) is a_f four:

p - = 4 [k - (15o)

We postulated, in Part III, that sequences with mini-

mal out-of-phase correlations were the best signals in the
Gaussian channel. The next theorems give bounds on the

optimal types of correlation function.

THEOREM:

min avg R,(m)= { -1 ffpisodd }* '_e [1 + 1/(p -- 1)] ff p is even

Proof: Taking the average as indicated yields

p-x

1 mm-,,t

avg Ro(m)- _ Ro(m)p-1
m_p nt.=l

D2, - p

p--1

(151)

To minimize the average by choice of a, we must make

D_, as small as possible: D_ = 1 if p is odd and Do = 0

if p is even. Substitution of these values gives the theorem.

This bound on the minimum average correlation, along

with the congruence of p and Ro(m) modulo 4, produces

the following result:

THEOREM: Let a be a binary (_1) sequence with

period p. Then,

(-1, ffP---_3(4) 1

) O, ffpmO(4) (

. oaXRo(m)>_I
2,tfp----2(4)!

Proof: The maximum value of R(m) is certainly larger

than the average, and a fort/or/larger than the minimum

average.

max Ro(m) >_ avg Ro(m)

,,,_o(p_ ._o_p_ (152)
>_ min avg Ro(m)

o m_o(p)

If max Ro(m) is less than any one of the bounds stated in

the theorem, then, because p =- R(m) modulo 4, we must
have

--2>-- max R(m)>- -(1+ p1.__ 1) (158)
,m_o(p)

a contradiction.

Next, we will prove the theorem referred to in Part

III; namely, the following:

THEOREM: Let a and/3 be (_ 1) sequences whose auto-

correlations are Ro(m) and R_(m), respectively. Assume

that there exists an operator g_ in _ such that B = g_ a.

Then, B_(m) = Ro(km) = g_ Ro(m).

Proof: The correlation of B is

It

l (m) =
"e,,=l

, (154)

= _ 0tk._+t 0_(s_+wsl+t

_¢._1

But since (k, p) = 1, kn+t, as a function of n, passes

through all residue classes modulo p; in this case,

P

l_(m) = _ o_o_o_ = Ro(km) (155)
tt=x

which is g_ Ro(ra).

As stated in Part III, operators of the aitlne group do
not alter the set of values which Ro(m) takes on, but

merely the order in which they appear. In the transfor-
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mation a,--*a,k+, we say that a has undergone a t-phase

shift and a k-decimation.

C. Term-by-Term Products of Sequences

In the sequel we shall need to know relationships be-

tween the properties of (...1) sequences and those of

their term-by-term product. The emphasis will be on the

period and correlation function of such a product.

Let a = (a.) and fl = (ft.) be binary (___1) sequences
having periods p and q, respectively. The terra-by-term

product sequence y = a*fl of a and /3 is defined term-

wise by

y. = o /3. (156)
We shall often refer to this as merely the *-product. De-

note the period of 3' by t, and let v = (p, q), V = [p, q].

Ifv= 1, yelearlyhasm_malperiodt=V=pq. But

ffv_l, itisnotnec_sarilytruethatt=V. Forexample,

a:+++++ +++++

+++++

/3:+++---+++---+++
__-+++---+++---

y: +++--+----+--+++
+++--+---+--+++

(157)

Herep= 10, q--6, v=2, andV=30, butt= 15.

The fact that a maximum period is not attained indi-

cates that the sequences are not really "independent" but
have some common structure.

To calculate the autocorrelation function of y,

$-1 t-1

m_--.,o w,=o

t

(158)

tt--o

Let us decimate a to form a set of sequences a" as

follows:

a_ =a,.k_; u =0,1 ..... v- 1 (159)

and similarly for ft. Then

• -1 V-1

'22
1_.o k--o

y is chosen, for a particular u, so that 0 < u + y < v and

u+kv+m = (u+y) + (k+r)v. Set k =i + ip/v; 0 <_ i

< p/v. This gives

v-1 (p/v)-1

t

U=0 _=0

(161)
(vv/p) -1

_.d u O[u+V # t':lu+VO[i+jp/_u i+_'+Jp/_ _i+jp/u I"i+l'+]p/'o

J=o

But each a_ has period dividing p/v; therefore, ff we

sum over i first and recognize that i + ip/v runs through

all residues modulo q/v, then

= ,:o ]\

(16e)

Since V = pd/v, we see that Vv/p = q = v(q/v). Define

(p/_e)-t

Rl(m) = _ ai' m.,""+' (163)
_---o

(¢11v)-t

R_(rn) = _ /3_ /3j_', (164)
1=o

where m = y + re, with y chosen such that 0 _< u + y < v.
The correlation of the *-product thus becomes

t
Rr(m) = V _ R_(m) R;(m) (165)

u--O

THEOREM" If y = a*/3, where a and fl have period

p and q, respectively, and ff v = (p, q ), define

(W_)-1

R_(m) = _ a.", -,+,""+v (166)
1&=O

(q/t,)-1

(167)

J=0

where m = y + re, with y chosen such that 0 _< u + y < v.

Then, if t denotes the period of y,

V-1

Ry(m) = --_ R_ (m) R_(m) (168)
t_=0

When p and q are relatively prime, this reduces to a

well known form,

Ry(ra) = R,(m) Ro(m) (169)
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D. Kronecker Product of Sequences

In this Section, a second kind of sequence product is

investigated to find the period and correlation function

of the resulting sequence.

The Kronecker product 3` = a @/3 of two sequences

a and/3 having periods p and q, respectively, is defined

for all n= uq +y by

3`_+v = _ fly (170)

where 0 _< y < q. We shall refer to this product merely

as the (_-product.

If t denotes the period of 3', then t is the least positive

integer such that

y,, = 3`n÷_ (171)

This periodicity can also be expressed in terms of the

component sequences

a,, B, = a,+_ #,,, (172)

wheret=xq+z, 0<z+y<q (xandzthusdepend
on y). Clearly, t-divi-'_ees pq, because a_/3v = a,,.p/3_.

And pq is also the least multiple of q which t will

divide. However, the period need not be pq and, in fact,

may even be less than q. For example,

(It: "4- --

/3: + -- + -- + (173)

a_B: +--+-÷--+--+-

In this case, p = 2, q = 5, and t = 2.

We note also that this product is not a commutative

one; that is, a @ fl is not generally the same as /3 _) a.

For the example above,

/3(_)a: + --- + + - - + + - (174)

has period t = 10.

THEOREM: If p > 2, t = pq.

Proof: Let t = xq + z, 0 < z + y < q for any given

fixed y such that 0 < y < q. Then, for all u,

fl, = a,.,fl,,, (175)

Now either _ = a_,_ for all u, in which case p divides

x, or else a_ = -a_, t for all u, in which case p divides

2x. In either case, p divides 2x, let us set mp= 2x. Then

t = (rnp/2) q + z divides pq. For some k _> 0,

kt = k_=_--)q+ kz = pq

(176)

This can be true only when km = 2 and z = 0, or else

m=0 and kz =pq. In the first case, z=0 implies

t = xq from which it follows that t = pq, since p is the

least multiple of q such that t divides xp.

In the second case, m = 0 implies t = z < q. This pro-

duces two conditions on the sequences

a, fl, = a, fl,+t 0 <_ y < q-t
(177)

a. fly = a,+, flv+t-q q-t <_ y < q

We cancel a,, from the first equation and note that/3 has

period q in the second to give

fly =flv, t 0 <_ y < q--t
(178)

a_flv = _.l/3v÷t q--t <_ y < q

Since the second of these equations holds for all u, and

since q > t > 0, there is some Yo such that q - t _< y, < q

and either/3% = - fl_o"' or else fl_ ° = flvo.t. For this yo,

the second equation above becomes

\

au = --Ct,,+1 If

or I or(11_ = 13[1¢+1

all u (179)

But this would require p < 2, contrary to hypothesis.

Thus, for p > 2, the only valid case is t = pq, proving
the theorem.

In the proof above, it is seen that for p = 2, the struc-

ture of fl determines t; t is the least integer such that t

divides 2q and

fly :/3_,+t 0 _< y < q -t
(180)

fly = --flv.t q -t _<.y < q

Naturally, if q is prime and p = 2, either t = 2 or else

t=2q.

The correlation function of 3' : a @/3 is, by definition

pq-1
t

R 3"( m ) = -_ 2
tl=O

3`, 3`.÷. (181)
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Ifm=rq+s andO_<s<q,

t p-1 [ q-s-1

ct,, ¢,+, ,a_flv,_

+ _ _ a,,+,+l/3v fl_+,--q
lg---q-J

_-,-1 (182)_ t Ro(r) _ _,B,÷,
Pq v=o

q-1 }
+ R. (r + 1) E ¢_yBy÷,

V-_/-s

Define the aperiodic correlation of B as

q-s-1

T_(s) = _ _,p,_. (183)
y=o

Then, the second summand above becomes

q-1

ft, E,., = Ro(s) - T0(s) (184)
il=q-s

Substitution of this in the equation for Ry(rq + s) gives
the final result:

THEOREM: If _, = u @ B, where a, #, and _ have

periods p, q, and t, respectively, then

ptft (185)

+ T_(s) [R,(r)-Ro(r + 1)]_
]

We will almost always be interested in the case p > 2;

we can therefore drop the t/pq factor in R_(m).

av(rq + s) = Ra(r + 1) Rcj(s)
(186)

+ T_(s) IRa(r) -aa(r + 1)]

In a later Section, we will work specific examples using
this formula to show existence of certain classes of se-

quences having desirable correlation functions.

E. Self-Noise of Incomplete Integrafion

It is often advantageous, in the interest of saving de-

tection time and equipment, to estimate the autocorrela-

tion function of a sequence by summing the received

terms, multiplied by a delayed replica, for only a fraction

of the total period. We show in this Section that this
estimate is unbiased and that the variance Aecreases

monotonically to zero as more and more terms are ad-
mitted to the sum.

Suppose we observe a binary (-+-1) sequence a for only

t terms, whereas the period of a is p > t, Let Co(mtt , s)
denote the normalized estimate:

¢

Ca(mlt, s)

n=l

We will suppose that the origin of ct is unknown; i.e.,

that s is a uniformly distributed random variable. For any

m and t,

Ca(m[t) = avg Ca(m[t,s)

P

#--I

p t

8=1 _t=l

By summing first over s and then on t, we see that

Ca(mlt. s) is unbiased,

C,(ralt) = Ca(m) (189)

since the expected value of the estimate equals the true,

or full-period, value.

The self-noise (i.e., the fluctuation or the variance of

the estimate) will be a function of m. Many times, how-

ever, the delay variable is either unknown beforehand or

unimportant. Hence, we treat m as a random variable,

with all values of m (within a period) equally likely. The
variance in the estimate is

_'(t) = --_ : C_ (mlt, s ) - C2, (m)
$=1

-- tZPZ ,.=i,=_ an+, a_÷,÷,,a,+, a,÷,+,_
n:l _'-1

P

- -)-- c., (m) (190/

t t p

1 1

n:l I"=1 7_=1

t t p-1

28



IPL TECHNICAL REPORT NO. 32-388

Designate the largest out-of-phase value of C_ (m) by

ICI_1, and, similarly, the smallest value by [CI2m,,. Then
we can bound the variance by

_T-¥ m,o

(191)

This inequality degenerates to equality when a has two-

level autocorrelation, lCl _._ = ICl=min.

1_,(t) _ (1-1c1_._)-W(1-lCl_i.)+(ICl_u-ICl_,.)

(192)

The upper bound is clearly positive and monotone de-

creasing in t.

As a special case, suppose that [Cl_z = ICl_l, = C _.

Equality holds, so that the standard deviation of the

estimate is precisely

a(t) = ,/(p-t)(1-C') (193)
_ _ tp

When C z is m_n one, it may be omitted; such

will be the case F6t-t_e so-called pseudo-noise sequences

(Ref. 42), as well as many other sequences given in later

Parts. For these sequences,

_(t) = _p-t 1 _Jl-(t/p) (194)
tp -- _/--_ t/p

The significance of this result is that correlation can be

estimated to a desired degree by proper choice of t. With

a given ratio t/p, the accuracy is improved by increas-

ing p. When p > > t, the variance is the same as that of

a Markov chain with independent states (Ref. 43).

1
_(t) --- -- (195)

V_

In the more general case, if ICl_ and [C] _t_ are much

less than one, we estimate the upper bound relation

¢(t) < +(ICl'_.. -IC1¢,.) (196)

There are many sequences, which we will study later,

with three-level autocorrelation for which ICl_.. = 3/p,
Ic1 m,, = 1/p:

8

IcI 2-.. -ICI _,o = _- (197)

For these, the upper bound on deviation is slightly larger

than the previous value:

_(t) __ + p--r

At t =: p/2, and large p,

(198)

When we are dealing with maximum-length linear

shift-register sequences, it is interesting to note that we

can determine the variance in partial-time correlation

without resorting to an average over correlation delay.

That is, we can determine the variance of C(mlt, s) for
any fixed m.

If a is a maximal-length linear sequence, it possesses

the following property: for every m _ 0(p), there exists

a u = u(m) such that

o_ a_+,_ = _+_ (200)

This is due to the so-called "cycle-and-add" property of

these sequences. The variance is then easily computed as
before.

1 _P 1
,,_(mlt) = --_-___C_(mit, s) - 7

$=1.

p t t (201)

1__ 1- o..+,+_ _+.+. pZ

For those values of n--_ k, there exist v = v(n, k) such

that

a,,+,+,, o,+,+,, = a .... , (202)

Consequently, by summing first on s and then over u

and k,

= a,+_.o + pt p2_'2(mit) "-_ _=, _:1 .:,

-_ (203)
_ (p-t) (p+l)

p_t

The standard deviation for each m is independent of m:

_(mlt) = ./(p-t)_ IF+i) (204)
N p2t

When ._(mlt ) is averaged over all m, as was done for
the other less specialized sequences, the same answer is
obtained

o_(t) = (p-t) (p,-1) (205)
p_t
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F. Cross-Correlation of Binary Sequences

Let _ and # be binary (__+1) sequences, each having
period p, autocorrelations Ro(m), Re(m), and cross corre-

lation R,_(m). We then prove the following theorem:

THEOREM: R,(0) - R°(ra) > R°_(0) - R°o(m).

Proof: Let 04= {i: a_ _#,}. Then we write/_ in terms
of a, as follows:

#' = -_,; i • °4 _20e)

Now, it is clear that
II

rt.(n) - rt°0(n) = _,-. (_, -_,)

---- 2 _ ¢zt (zi--.

i(¥

Hence, by the triangle inequality,

no(n) -a°_(n) < 21 041 = R°(0) -a°0(0)

and the theorem follows immediately.

(207)

(208)

Without loss in generality, we can pick the origin of
/_ (or a) such that R,_(0) is the maximum cross-correla-

tion value. The theorem above then states that, for any

sequence a, its autocnrrelation is more distinguishable

than its cross-correlation with any other sequence # of

the same period.

VI. SYNTHESIS OF BINARY SEQUENCES

We have discussed so far the need for sequences with

desirable correlation properties and have shown the suf-

ficiency of considering only binary sequences. We have

given no method, as yet, by which such sequences can

be found, and indeed, there is no efficient general method

known. Many methods are presented in the Sections

which follow that give extremely good results for a wide

class of sequences.

There are two problems we wish to consider in se-

quence synthesis. First, since the sufllciency of binary

synthesis was based on finding a binary sequence when

the correlation function is specified exactly, we need a

method for doing this. And second, since in communica-

tions we want to use sequences with low out-of-phase
correlations, we need a method to find them.

One method which always works is an exhaustive

search to find the desired sequence. Even if we examine

only one representative from each of the different equiv-

alence classes, this is a great deal of work, because the

number of equivalence classes increases roughly exponen-

tially. Hence, we seek shorter methods to find solutions.

The problem of finding a sequence whose correlation
function is specified is a comparatively old one (Ref. 46,

47, 46, 49, 50, 51 ), and it is still unresolved in the general
case. One class of notable solutions contaifls the syn-

thesis procedures for certain classes of pseudo-noise se-

quences, and another partial solution, developed in

Section C, covers synthesis of binary sequences having
specified symmetries. As we shall see, an infinite class

of optimum and near-optimum sequences belongs to
this class of solutions.

Synthesis of sequences with the best correlation func-

tion is sometimes even more difficult, because the exact

form of the correlation is not usually known. Many ex-
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tremely good sequences can be found by combining

sequences of smaller periods; this is done in the follow-

ing Sections.

An iterative method yielding very good approximate

solutions to both problems appears in the final Sections
of this Part.

A. An Algebra of Periodic Sequences

Let _ be an arbitrary field and let _: [x] denote the

ring of polynomials with eoefllcients in _. We will de-

note by _, the ring of polynomials modulo xL -1:

_, = _ [x]/(x L - 1) (2o9)

This ring is a hypercomplex system (Ref. 52) (or vector

space) over _ with basis (1, x, x _, ... , x L-_) and structure
constraints

x_x j = x _÷j (i + j taken mod L) (210)

Every element A of _ has the form

A = ao + alx + ... + a,,-lx L-1 (211)

The basic elements J_} may be construed as the ele-
ments of a cy_f order L; elements of ff_ are
formal sums of-fiekl-elements paired with group ele-

ments. Such a ring is called the gr¢rup ring (Ref. 53) of

the group (x) over _.

By straightforward calculation, we can show" that

/_-1

1. A + B =_(_ + #_)x _
t=O

/a-I L-1 )

3. A=Bffandonlyifa_=#_,i=O, 1..... L-1

We define the reverse A* of an element A to be the

polynomial with the coefficients in reverse order

r,_ 1

A" = _ a..i x i (213)
i=0

Then, by using (2) above,

£,-1

= _Roo(n)x"
It=0

(214)

The fact that correlation is a type of product in _z

allows us to state the first sequence synthesis problem as

one involving factorizations in rings: If an autocorrela-

tion R is given, we seek an A such that

AA* = R (215)

under the constraint that the ai be binary valued.

The problem thus reduces to one in the theory of a

cyclic group-ring, and all the powerful tools of algebra

and the structure of rings are available to aid in the solu-

tion. However, even these have not given a satisfactory

general solution as yet, chiefly because solutions are

not unique and, moreover, generally not even equivalent

under transformations of the affine group of Section IV.

The restriction of a_ to binary values is an unnatural one

insofar as algebraic methods are concerned. If we suffi-

ciently restrict the form of either R or A, or both, solu-

tions are available. Being interested in low-out-of-phase

correlations, we may investigate methods of synthesizing

the pseudo-noise sequences, for example.

Before making any such restrictions, however, there are

a few statements concerning the structure of _,. A funda-

mental theorem of group rings (Ref. 54) applied to L_

allows us to decompose L_, into a direct sum or ortho-

gonal fields _ whenever the characteristic of _ does not

divide L. This condition (semi-simplicity) is always satis-

fied if _ is the field of rational numbers or any other field

of characteristic zero. If L_ is a finite field, say, the in-

tegers modulo a prime q, then the condition is met if

(q, L) = 1. We will always assume that the condition is

fulfilled. Then,

Each _ is isomorphic to a simple algebraic extension of

by a root of an irreducible factor of xL -I. Every ele-

ment A in if, can be uniquely decomposed into a sum of
elements from fields:

A = At + A.., + ... + A,,,
(217)

A_Aj = 0ifi=_-i

Denote unit element of _ as I_. By the orthogonality of

units,

A_ = A I_ (218)

The decomposition of _, is thus completely specified by

the field units { Ii }.

An element _ with the property

#_ = # (219)
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is called an idempotent. In each field _:s

0_ = 6s
(22o)

0_ = I_ or 0

All idempotents are thus the sum of field units, and

1 = I1 + 1_ + ... + I, (221)

Another way of describing the units is to say that (Is)

is the maximal set of mutually orthogonal idempotents.

The following theorem characterizes the rational group

ring.

THEOREM: Let _/__ be the group ring of a cyclic group

(x) of order L over the rational numbers _. There is a

unique field _Ra corresponding to each different divisor

d of L, and the period of every element in _R_ is d. The

unit Id of_d is of the following form:

1. If d = 1, then

b--I

S=o

2. If d = q" for some prime q, then

b/d--q

S=O

X(q-1)d/q] Xtd

3. If d = ql', q2"' • •. q_'*, a composition of k distinct

primes ql .... , qk, each having multiplicity ms > 0, and
dr = qs", then the coefficients of Id are given by

coef. of x" in Id = L _-1 H (cool. of x _ in Idi) (222)
i=l

The proof of this theorem consists of a straightforward

verification that the set {I_} is a set of r(L) (where r(L)
= number of divisors of L) mutually orthogonal idempo-

tents. This, coupled with the fact that x_ -1 has pre-

cisely r(L) irreducible factors, implies that {I_} is a
maximal set of mutually orthogonal idempotents and

must, therefore, be the field units.

B. Correlation Equation

If _ is a binary (0, 1) sequence and A is its represen-

tation in _,, then A can be written as

A = B + C (223)

where B represents the "even" part and C represents the

"odd" part of A, as follows:

B= 2

C : _ _ (1-_,)x s

Let us define other sequences

= 2 (1-_) (1-G.-s)x s

U= 2x s

"B has one's where _ has zero's symmetric about _o, and U

is the all-one's sequence. By construction,

B*=B

C* = U - (B + B) - C (226)

This reduces the correlation equation to

AA* = A(B + U - B - B - C)
(227)

R=a(u-n-a+n)

By moving all terms to one side of the equation,

A' - (B - B)A - k U + R : O (228)

k being the number of one's in A.

i'- (B-B)A+ (R-kU) =0 (229)

Hence, if the symmetric structure of A is known, A can

be found by solving quadratic equations in the fields _.

C. Synthesis of Symmetric Sequences

Suppose A is symmetric about _o; that is, A = A*.

Then, to solve

A' = R (230)

we need to find a binary (0, 1) square root in ff_. If L

is odd, we can let ff be the integers modulo 2; then all

cross-terms in the square, being even, vanish:

A2 = 2 _x2' = 2 R'_(2i)x_S (231)

Upon equating coefficients, we have a general solution

to the first synthesis problem for odd period symmetric

sequences.

THEOREM: Let a be a binary (0, 1) sequence having

odd period and symmetry about ao. Then, a_ -_ Rg2/)
modulo 2.

Coefficients in a product AB are convolutions of the

sequence a and/_. So, in general,

A _ = K (232)
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where we use K to denote the generator of A's convolu-

tion function.

/.-1

¢=o

When we postulate symmetry of A in the correlation

problem, we are really saying that R(m) is a valid con-

volution for a. The general problem we have solved is

that of finding a sequence with a given arbitrary convo-
lution function.

_, - K;(_ ) rood 2 (284)

The quadratic residues for primes of the form 4t + 1

are sequences of this type and, as we shall see later, are

very important because their correlation is the best

among all binary sequences of the same period.

THEOREM: Let a be a nontrivial binary (0, 1) cyclic

sequence with two-level autocorrelation, period L, and

symmetry about a0. Let the sequence have k terms equal

to _1 per period. Then, L must be even and

__L_- 1+ (_'+ 1)'
L-1

if L has s distinct prime divisors.

Proof: Let A be the generator of _ in the rational group

ring _. We must solve

A= = B (235)

Case I (L odd): Let L be odd and assume that a non-

trivial a exists. By the previous theorem,

a. -. R_(2n) (_z0)

But R has only two distinguishable coefficients, R(0) and

R(1) = R(2) ... = R(L - 1). The reduction modulo 2 re-

veals that _ can only be one of the trivial sequences (all-

zero's, all-one's, all-zero's with a one or all-one's with a

zero), contrary to hypothesis. Therefore, if a is a non-

trivial, symmetric sequence with two-level autocorrela-

tion, L may not be odd.

Case II (L even): Let L be even and assume that a is a non-

trivial symmetric sequence with two-level autocorrela-
tion. The complement of a binary sequence which has
two-level autocorrelation also has two-level autocorrela-

tion. We choose 6 to be the one with _1 = 1. Then we

can write

A, = a = (k - x) + x U (Z_r)

From Section A, U is a multiple of It:

U = L t, (238)

Upon decomposing R into its field components,

R = [k+(L-1)X] It + (k- x)I, + ... + (k- x)I,.

(_sg)

Subscripts d on I_ refer to the divisors of L. Since

A _ = k=It,

k,z, = [k+ (L-1)x] It (24o)

which gives the Bruck-Ryser condition (Ref. 55) on a

difference set ( another name for two-level autocorrelation

sequences):

t_ = k + (L-1)_ (24Z)

Other components must satisfy

A] = (k - 2t)I, (242)

for all divisors d of L. These are equations in fields, and

therefore, N/_ - _, must be in _ ff there is to be any
solution _.

At = k It

Ad= ±_I, d_l

According to the theorem in Section A, only those

idempotents in fields indexed by a d such that

d = qt'_ q=" .... q,'. (244)

with each m, = 0 or 1, have non-zero coeR_cients of x t.

Let s be the number of primes which divide L; there are

then 2 ° such non-zero coefilcients of x _, each equal to 1/L.

Therefore,

^ '[ z]a,=l=T k+_ a, (245)

The 2'- 1 numbers ad above are either plus or minus

one. Use of the triangle inequality yields

k+ _X(2' - 1)_> L (248)

By subtractingk from each side,squaring, dividing by

k - x, and substituting x = (k= - k)/(L-1), we obtain

(2'--1)=> (L-k)(L-1) _ 1-- (k/L)
-- k (k/L) (L--l)

(247)

which can easily be solved for k/L, giving the value
stated in the theorem.

k 1

Z >--1 + (u - 1), (248)
L-1
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This inequality is least stringent for L = To, the prod-

uct of the first s primes. Hence, for any given s, a bound

ro on the ratio k/L is given by

1
to(s) =

1 + (9" - 1 )' (249)
f8 _ 1

For any ratio k/L < to, no sequences may exist. We may

properly speak only about integer values of s as in Table 2;

however, for visual facility, Fig. 11 shows to(s) with

the points connected by a smooth curve. At s = 7, k/L

lies within 2% of unity, and at s -- 8, within 0.7%.

Table 2. Lower bound ro on k/L

• f* re

1

2

6

30

210

2,310

30,030

510,510

9,699,690

1.000

0.500

0.357

0.371

0.48 I

0.706

0.881

0.98 I

0.993

j = number of prirnel dividing cyde length

st, = woduct of first s wimu.

k : number of one's (or zoro's) por cyde.

_o
c=
z

m

o
.J

I.O

0.5

I I I I I I I
t 2 3 4 5 6 7

$, THE NUMBER OF PRIMES DIVIDING L

Fig. 11. Lower bound on the ratio k/L as a function

of s, the number of pdmes dividing L

D. Synthesis of Antisymmetric Binary Sequences

Suppose that a is antisymmet_ic about o_; that is,

_= l-a_, (i=1,2, .... L-l)
(25O)

a0

Clearly, L is restricted to being odd. In the correlation

equat/on, B = _o and _ = 1 - ao. Then,

A"± A + (a - k U) = 0 (251)

If we choose to solve this in _,, we must solve a quad-

ratic equation

A_± A, + P_= 0 (25_)

in every field Rd with d > 1; for d : 1, of course,

A, = k I_ (253)

The number of one's/¢ in A must, because of the anti.

symmetry hypothesis, be

L±I

k = ---F- (254)

Rather than trying to solve the quadratic equations in

_,, as stated formally by

1
A_ = ± T [ir_ -4- ,k/(I,_ -- 4R_)]

1
= ± T [l±x/1 + _k u -/i)] I_

(255)

which is often difllcuk because of the square root in-

volved, we may revert back to Eq. (251) directly. Since L

is odd, we may reduce Eq. (251) modulo 2 and equate

coefficients, giving

&.+ a,.. a(z.) + k (rood9.) (z_)

Since/t(m) and k are given, we have only a few choices
to make to determine a.

a,=&

= at + lq(9.) ÷ k mod 2

a, = a, + a(9.) + a(4)
etc.

There is only one choice to make in each of the sets

corresponding to the cycles of g_ : (0) (1, g, 4, ...) ...

(v, 9.o, 4v, ...), a total of C (2,0) choices (see Eq. 147).

Then, too, if we seek sequences with two-level auto-

correhtion functions R = (k - _,) ÷ k U, direct substi-

tution into the correlation equation yields, for _o = i,

L+I (I-U)=0
A'-A+ (257)

Let q be a prime dividing (L + 1)/4, and reduce the equa-
tion modulo q. Then,
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A' = A (258)

The sequence we seek is one of the binary idempotents
in GF( q )_. Moreover, since A q = A, and we are working

modulo q,
A

a, = _, (259)

The sequence we seek is not only an idempotent, hut it is

also left fixed by the operator g _ of Part IV; there are
2 c _q,o_such sequences where, as in Part IV,

C(q, 0) = V ¢(d)
_ E_--T_ (_0)
dlt,

Of these 2 c (q.o), many are not eligible because they have

an improper number of one's; these can be discarded

immediately.

Among the sequences of this antisymmetric type are

found the linear binary sequences mentioned in Part II

and the quadratic residue sequences of period 4t+3 to
be discussed in the next Part.

E. Sequences _fied Symmetries

Given the correlation R, we can solve the quadratic

equation for A formally whenever (B - B) is specified.

As in Section D, this solution has the form

A = --_-[ (B - B) + J B - B) ' + 4(k U - R)]

(281)

in the group ring over a field with characteristic not

equal to 2, 15= 1 being chosen to make A binary. Con-

ceptually, then, the symmetric part of A along with its

correlation is sufficient to specify A.

The difficulty arises when one seeks the square root.

One need find only a "positive" square root, the rest being

taken into account by 1. Taking a square root in an arbi-

trary field is not always an easy thing to do, unless the

radicand takes on a form recognized as a square. Other-

wise it may require less work to perform an exhaustive

search for the sequence with the given correlation.

We can often reduce the amount of search in some

special cases by looking for multipliers. A multiplier of a

sequence _ is an integer m such that, for some t, there is

an operator g_ in G which leaves _ fixed. That is, g_

= a. According to the theorem in Part VB, m must also be

a multiplier for the correlation function

n(.) = R(mn)

Since _7 is a group, the multipliers also form a group. Let

q be a prime not dividing L, and designate s = qr. If we

raise Eq. (229) to the sth power, reduce modulo q, and

apply Fermat's theorem,

A 2" - (B" - B')A" + (R' - kU) = 0

Suppose that R' = R, B' = B, and B' = B; that is, that s

is a multiplier of R, B, and B. Then,

A 2" -(B -'B)A" + (R -kU) = 0

A, -(B -B)A + (R -kV) = 0

Subtracting these two last expressions, it is seen that

(a' + A)(A' -A) = (e -e) (A" -A)

But this means that in each of the fields of GF( q ),, either

A' = A, or else, A_ + Ai = B, -_. If the former holdsi

in every field, s is a multiplier of A; let us assume, then, that

there is some j such that A_ _a Aj. If we had used s2

instead of s, we would have reasoned that in every field,
either A_' = A, or else A_' + A, = B_ - Bi. But then we

cannot have A_' + A_ = Bj - Bj because this would
imply that

or

A;'= A;

a_ = aj

contrary to hypothesis. Hence, if A_ _= As for some i, then

A_' = A t. But then,

A" -- A

and m = s2 is a multiplier.

THEOREM: If s _- q'(mod L) for some integer r and

p,sime q relatively prime to L, and R' = R, B' = B, and
B' = _ in GF(q),, then either m = s or m = s_ is a multi-

plier of A.

For example, suppose we wish to find a ___1 sequence

a having

R(n): 13, 1, -3, 1, 1, -3, -3, --3, --3, 1, 1, -3, 1

The multipliers of R are {1, 3, 4, 9, 10, 12), as can easily
be verified, and each of these is of the form 4"(rood 13) or

10t(mod 13). Hence, ff we were to assume that either

4 or 10 were multipliers, 12 _ - 1(rood 13) would be also;

then, A* = A, and we can use the methods of Section C
,,%

to find an a. We must check the correlation of a to verify

that the a we find actually satisfies AA* = R. A solution
does exist:

a: +---++++ +--
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As a special case, we go back to the two-level autocor-
relation case:

A 2 - (B - B)A + (k -,_)(1 - U) = 0 (262)

Let q be a prime divisor of k -X relatively prime to L.
If we reduce modulo q, then A, B, and _ are elements of

GF(q), related by

A' = ( B - _) A (268)

In each field, either

A4=0 or A_=Ba-B_ (204)

Hence, knowing the symmetry of A limits, the forms

which A can take rather severely, and it cuts down on the

number of trial solutions from 2_ to 2 c-1, where C =

C (q, 0), the number of fields. Generally, for any m

(1<re<n),

A" = (B -- B)'_-" A" (265)

so that for n = q" + 1,

A q'÷l -- (B - "B)"A = (Bq" - "Be')A (266)

Let us now assume that the only effect of raising B and B"

to the q'-th power is a shift in phase: for some t,

Be" = x t B
~ ~ (267)Be" = x t B

Referring back to Part V, we would say that B and B

are invariant under g_, for some t. As a result,

A e'÷l = x'(B - B)A = x'A _ (268)

and therefore, A is invariant under the same operator.

A_" = xtA (269)

THEOREM: If _ is a binary (0, 1) sequence with two-

level autocorrelation, if the symmetric part of A is un-

disturbed by some operator g_, in the afllne group if, and
if q is a prime which divides k - x, then A is also invariant

under this operator.

Stated in terms of multipliers, this reads: If (q, L) = 1,

q is a prime which divides k -x, and if q" is a multiplier

of the symmetric part of A, then q" is a multiplier of A
also.

This theorem is similar to Hall's multiplier theorem

(Ref. 56), which states: If (q, L) = 1, q divides k - x,

and q > x, then q" is a multiplier of A. The theorem above
can be used to show that all known pseudo-noise se-

quences have symmetries such that the restriction q > x
of Hall's theorem is never needed. There is an unproved

conjecture that this restriction is never needed.

F. Iterative Methods and Approximations

Often, when we seek a solution to the first correlation

problem, we must assume some form for R(m), not know-

ing whether a solution exists or not. Almost equally as

often, for engineering purposes, we do not need to find

a sequence which has the given correlation exactly but

one whose correlation approximates the given one to a

desired degree. This is related to the second correlation

problem, that of finding a sequence with low out-of-phase

correlation, in that we wish to approximate the ideal (or

two-level) autocorrelation to as close a degree as possible.

Let r(m) be a given function. We desire to find a

binary ( _+ 1 ) sequence a, whose autocorrelation R (m) in

some sense approximates r(m). Now, define a qoss"

criterion -/7 (a) on a relating to the quality of this approxi-

mation. For example, .E(a) might be the total square error,

It

.c(_) = _ [,(m) - a(m)]' (270)
tW,=l

Implicit in any definition of./7 (a), we assume that a is a

"better" sequence thanB if .£(a) < -£(B).

Suppose that a is a given sequence; then, for any fixed k,

denote by a _) that sequence whose terms satisfy

a_ i _a k
ct_k) = (271)

--_ i=k

Considering the set (ack_; k = 1, 2, "'" , p) to be a
neighborhood of a, the loss assumes minima relative to

these neighborhoods and, of course, at least one absolute

minimum. This absolute minimum corresponds to the best

approximation possible. By proper choice of loss func-

tions, it is hoped that relative minimal loss sequence also

give good approximations.

To find a relative minimum loss, we may start with an

arbitrary or randomly chosen periodic sequence fl and

find a sequence of indices i_, i_.... , i, such that

(272)

When this finally leads to a = a"v q. .... q_ such that, for

all i,

.C(a) <.C(_"' ) (273)

then a is a minimal loss sequence. There is no guarantee,

of course, that this iteration will ever give the true mini-
mum loss.
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If we were to start our iterative procedure at a maximal

loss sequence v and finish with a relatively minimal loss a,

(% _ V(il, t=, ...,i l)

the total change in loss would be

(274)

k-1

£(_) - .C(a) = _ [.C (_<',",' .... ',>)
j--o (275)

- .C(,",", ..... ',+,>)]= k(a.C),,,

When we want to have .g (a) as small as possible, we

want to choose the indices i,, i2, • • •, i_ to maximize _ (v) -

.C(a); i.e., to make both k and (A.£),, K as large as pos-

sible. In practical cases, k and A_ are not entirely inde-

pendent. However, k is usually related to the number of

minus (or plus) one's in a and is, consequently, some-

what fixed. Heuristically, then, we desire to maximize

the change in loss at each state of the approximation.

.C(a) = ./7(v) - k(aA?),,, (278)

When we begin the iteration with a sequence chosen at

random, we may still use this maximal-change policy to

advantage.

Whether iteratton--from a randomly chosen sequence

leads to a true minimum or merely a minimal loss depends

on the relative abundance of optimal sequences in the

set of minimal loss sequences. In the cases in which only a

few optimal sequences of a given period exist, the itera-

tive procedure has shown reluctance to find them. On the

other hand, the sequences found in almost every case are

surprisingly good ones.

1. Quadratic Loss and Minimal Variance Sequences

Because we seek sequences with low out-of-phase cor-

relations, we will assume that r(m) = -r for all m _ 0

and r(O) = p; that is, we seek, by the iterative method

above, to find an approximation to the ideal two-level

autocorrelation function. For any binary ( -+-1 ) sequence a,

define the loss function to be the total square error

p I1-1

_r(_t) = _ Cr(m)-R(m)]=: _ CR(m) +r]:
mi=l lil=l

(277)

Now, by changing ai to -at, the value of R(m) changes

by 2ai ( ai+,_ + ai-,,), because
P

a(m) = ai(a,+,, + a,-,,) + _ o_ 0_ (278)
II=l

n_ i..,_ i--m

The change in loss is therefore given by

.C(a) - £(_">) = _ [(R(m) + r)' - (a(m) + r
m=l

- 28, (_,_ + a,_.) )=]
,_, (279)

ai£ = 4 _._ [(R(m) + r) (a_+, + a,._) ai
m=l

- (a,_ + a,-.)']

Averaging these at .£ over i,

1
R2(m) - pZ -- (r--1)p+rD 2 - 8I

J

(280)
Here, we have inserted

P

,_1 (281)
p-1 P

_=1 _:1

When p is odd, note that the latter reduces to

8 = D: - p (282)

and when p is even, to

8=2(Do z +D_)-p=2D 2-p+(D,-D.) z

(2s3)

Do and D, represent the sum _: a. over odd and even n,

respectively.

At the termination of iteration, _i A_ _< 0 for all i.

Clearly, then, the average is also less than zero, whence

p-1

_ R'(m) <<_p" + (S - rO 2) + (r-l)p
mi=l

(284)

For a minimal loss a based on -C (a), the loss .C'(a) about

r' (m) = -1 is bounded by

p-1

llt:l

[a(m) + 1], _<p: + (r-Z)p

+ 8 - (r-2)D _ - 1
(285)

which, for odd 19and r = 3, gives an upper bound on the

RMS of [R(m) + 1]:

RMS [R(m) + I] = _/avg [R(m) + l]Z _< V_ + I

(z88)
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In practice, sequences found by iteration on a quadratic
loss are much better than the bound above indicates.

The reason for this is that A_.C _< 0 is too weak a state-

ment for most i. An indication of the sensitivity of this

bound can be obtained by estimating the average A .C

per iteration step. Starting with a maximal loss sequence v,

the all-one's,

£6,) = (p- 1)(p+ r)' (287)

Itmay be seen from Eq. (279)thatfor any a

.£(a)_<8(p - I)(p + r - 4) (288)

Let h be definedforan iterationfrom v toa by

h= 8(p- 1)(p + r-4)
(a.c),,, (289)

From (275), the loss value is

8k
= (n - l) (n + ,)' - T(p - l) (p + r - 4)

(S 0)

Certainly, L (a) > 0, and if a is minimal loss,

.C(a) _ (p + r_)(p- 1) + (r + 1) (D" - p) +E_

(291)

where Ep = Do - D, if p is even, and zero otherwise.

The bounds on h for every minimal loss sequence are
then

( 4)8k i-p+-.--- 7 <h
p+r

8k(1 P +
_<

P+r--l--I'r(r--1) +p+r(r+l)(D'-p)++E_](p_l)(pr)

(202)

The lower bound, if achieved by h, produces .£'(a) = 0,

and if the upper bound were achieved, .C(a) would have

the greatest value assumed by any minimal loss sequence a.

By using a maximum-decision rule in the iteration pro-

cedure, we attempt to increase the average, thereby

lowering h. As indicated by the small range over which

h may vary for large p (and if D z and E _ are small), we
do not have to increase the average very much to get a

sizeable decrease in .L (a)over the loss produced by the
worst-decision rule.

When, at a given stage, negation of the ith element in

the sequence produces a maximum change in loss, we

may expect that many such i will also produce this

change. As a matter of convenience, we always decide to

negate the least i which gives the proper change.

2. Even-Moment Loss Sequence

In using a quadratic criteriontogenerate a minimal loss

sequence, itisconceivablethatthe finalresultwillhave a

large number of places where correlationiscloseto -1

and a few places where the correlationislarge but in

which the decrease in lossgained by negating some ele-

ment, causing a decrease in the maximum correlation

(which iswhat we want), iscounteractedby a largenum-

ber ofsmall increasesofR(m) away from - i.Experimen-

totally,itisfound that thisdoes occur and becomes more

seriousas the period increases.

One way to counteract thisisby using a criterionin

which a largedeviation from -1 costsmuch more than

the totalcost of the small increases.To do this,we can

use an _h even-moment lossfunction

,m===._

= [a(m)+ i],. (29s)

For any given s, there existsa period p at which the

criterionwill begin failingto minimize the maximum

out-of-phasecorrelation.Up to thisperiod,the iteration

reduces the maximal IR(m) + 1 ] to a relative minimal
point, and this reduces the number of these maxima to a

relative minimum. For this reason, minimal loss sequences

for any s = so are also minimal loss for s < so.

Reducing the maximal distance of the correlation from
-1 is not exactly the same as reducing the maximal

correlation, since the even moment of a large negative

correlation will also cause the negative correlation to be
increased. On the whole, then, even-moment cost criteria

tend to make the final sequence nearly constant in out-of-

phase correlation.

Experimentally, s = 1 in the criterion gives good

sequences up to about p = 28, and s = 2 increases this up
to p = 46. For s = 4, good results were obtained up to

the largest period considered, p = 63. We shall have

more to say about these experiments later. It is of interest

to note (see Tables 8, 4, and 5) that the maximum cor-

relation remained about the same for s = 1, 2, and 4 at a

given value of p; however, the number of maxima de-
creased as s was increased. Note also the effect of different

values of r.

3. Maximum-Correlation Loss Criterion

We can take, as a valid loss function, the double criterion
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Table 3. Minimum loss sequences, r = 2

sth even-moment loss

P
s=l s:2 s:4

4 0 0 0

5 1(opt) 1(opl) 1(opt)

6 2(opt) 2(opt) 2(opt)

7 --1 (opt} -- 1(opt) --1 (opt)

8 0 0 0

9 | (opt) 1(opt) 1(opt)

10 2(opt) 2(opt) 2(opt)

11 -- 1{opt) -- 1(opt) -- I (opl)

| 2 O(opt) O(opt) O(opt)

13 1(opt) 1(opt) ! (opt)

! 4 2{opt) 2(opl) 2(opt)

15 --1(opt) -- 1(opt} --1(opt)

16 O(opt) O(opt) O(opl)

17 1(opt} I (opt) 1(opt)

18 2(opt) 2(opt) 2(opt}

19 3 3 3

20 O(opt) OCopt) O{opt)

21 1(opt) 1(opt) | (opt)

22 2(opt) 2(opt) 2(opt)

23 3 3 3

24 4 4 4

2S I (opt) - I (cU_ 1(opt)

26 2(opt) _ 2(opt)

27 3 3 3

28 4 4 4

29 1 1 1

30 2 2 2

31 3 3 3

32 O(opt?) O(opt?) O(opt?)

33 1 1(opt?) 1(opt?)

Max.
Rrst positive

correlation
ross change, s= 1

O(opt) O(opl) 34

i (opt) 1(opt) 35

2(opt) 2(opt) 36

--1(opt) --1(opt) 37

O(opt) 0 38

I (opt) 1(opt) 39

2(opt) 2(opt) 40

-- I (opt} 3 41

O(opl) O(opt) 42

1(opt} I (opt) 43

2 2(opt) 44

-- I (opt) 3 45

O(opt) 4 46

1(opt) 1(opt) 47

2 2(opt) 48

3 3 49

0 4 50

I (opt) 1(opt) 5 i

2 6 52

1(opt) 3 53

4 4 54

-- ! (opt) 5 55

2 6 56

3 3 57

4 4 58

5 5 59

2 2 60

3 3 61

4 4 62

5 5 63

sth even-moment loss

=1 2 $ --_

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

3

4

$

2

3

Max.

correlation

4 loss

First positive

change, s = I

2

3

4

1

2

3

4

5

6

7

8

5

6

3

8

5

6

7

4

5

6

7

4

5

6

7

Norm Figures are maximum out*of*phase correlation values.

= (R..,N.) (294)

where R,. = max (Ra(m)), and N, is the number of
times Ra(m) = Raw. We order .f (a)lexicographieally

as follows:

£(a)

ff R.. < R,. (295)

or B_ = R_x and Na <__Ne

Expressed another way, we may take

£(a)= pR..+ N. (296)

Then, naturally, .C (a) _< .E(/3) if and only if the lexi-

cographic ordering above holds, because N, < p.

The advantage of this criterion lies in the fact that only
maximal correlations affect .C(a), a property not exactly

true of the even-moment losses. The disadvantage of this

loss is that negative correlation excursions are ignored,

and the final sequence may possibly be far from two-level
and not have as few maxima as the even-moment cost

sequences (see Table 3).

G. Results of Iterative Techniques

Tables 3, 4, and 5 compare the quality of sequences

found by each of four methods: even-moment losses for
s = 1, 2, 4, and the maximum-correlation loss. The best

sequences of a given period found by these techniques are

compiled in the Appendix along with some of the se-

quences found by methods given in Part VII. A small,

relatively slow digital computer was used to make the
iterations.

To compute a correlation function, computer time
increases as p_; the loss computation requires summing
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sth even-moment loss

Table 4. Minimum loss sequences, r = 3

s----1

4 O(opfl

5 1(opt)
6 2(opt)

7 - z(opt)
8 O(opt)

9 1(opl)

10 2{opt)

11 - 1(opt}
] 2 0(opt)
13 1(opt)
14 2(opt)

15 --1(opt)

16 0(opt)
17 1(opt)

18 2(opi)

19 3

20 O(opt)

21 1(opt)

22 2(opt)

23 3

24 0

25 I (opt)

26 2

27 3

28 4

29 !

30 6

31 3

32 4

33 5

s--2 s----.4

O(opl) O(opt)

I (opt) 1(opt)

2(opt) 2(opt)

- I(opl) - 1(opt)
O(opt) O(opt)

I (opt) 1(opt)

2(opt) 2(opt)

--1 (opt) --1 (opt)

O(opt) 0(opt)
(opt) 1(opt)

2(opt) 2(opt)

-- 1(opt) -- 1(opt)

O(opt) O(opt)

1(opt) 1(opt}

2|opt) 2(opt)

3 3

O(opt) O(opt}

1(opt) 1(opt)
2(opt) 2(opt)

3 3

0 0

I 1

2 2

3 3

4 4

I (opt) ! (opt}

2 2

3 3

4 4

! 1

First positive decision
P

s._.l

O(opt) 34

1(opt) 35

2(opt) 36
-- 1{opt) 37

O(opt) 38

1(opt) 39

2(opt) 40

-1 (opt) 41

O(opt) 42

1(opt) 43

2(opt) 44
3 45

O(opl) 46

1(opt) 47
2(opt} 48

3 49

4 50

! 51

2 52

3 53

4 54

5 55

2 56

3 57

4 58

5 59

6 60

3 61

4 62

5 63

sth even-moment loss

s=l s=2

2 2

3 3

4 4

I (opt) 5

2 2

3 3

4 4

5 5

2 2

3 3

4 4

5 5

6 2

3 3

4 4

5 5

2 6

7 3

4 4

5 5

6 6

7 3

12 4

9 5

6 6

3 3

,4 4

5 5

6 6

7 3

s=4

First positive decision

s=l

2 2

3 3

4 4

1 $

2 6

3 3

4 4

5 5

2 6

3 3

4 8

$ 5

2 6

3 7

4 4

5 5

2 2

3 3

4 4

5 5

2 6

3 7

4 4

5 5

2 6

3 3

4 4

5 5

6 6

3 3

roughly p of these correlation terms; and the effect of

negating any one of the p sequence elements means that

p losses must be computed. The number of iterations is
near the number of minus one's, or about p/2. The total

computer time thus increases as a polynomial in pro-

portion to p_. (A search through equivalence classes

would increase exponentially in p.) If, on the other hand,

we start with randomly chosen sequences, less iteration

is necessary, and the time increases less rapidly than a p3

polynomial.

To introduce an initial starting sequence for iteration in

the ( p + 1 ) case, the p-period sequence previously found

was augmented by inserting an extra one per period.
After finding the sequence of length p, the computer per-

formed the augmentation and began iteration for p+ 1.
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sth even-moment loss

Table 5. Minimum loss sequences, r = 1

s-. 1 s_- 2 s-- 4

First positive change

4 0 0

.S 1 (opt) 1(opt)

6 2(opt) 2(opt)

7 --1(opt) --1(opt)

8 0 0

9 1 1

I 0 2(opt) 2(opt)

I I --I (opl) --! (opt)

12 0 O

13 I (opt) I (opt)

14 2(opt) 2(opt)

15 3 3

16 0 0

17 1(opt) I (opt)

I II 2(opt) 2(opt)

19 3 3

20 0 O(opt)

21 I 1

22 2(opl) 2

23 3 3

24 O(opt) 4

25 5 5

26 2(opt} 2

27 3(opt)

28 4 -- --_

29 $ 5

30 6 2

31 3 3

32 4 4

33 $ 5

0

I (opt)

2(opt)

- I (opt)

0

I

2(opt)

- 1(opt)

0

! (opt)

2{apt)

3

0

| (apt)

2(opt)

3

O(opt)

I

2

3

4

5

2

3

4

$

2

3

4

5

s=l

0 34

I 35

2(opt) 36

--1 (opt) 37

0 38

i 39

2(opt) 40

3 41

0 42

1 43

2(opt) 44

3 45

0 46

1 47

2(opt) 48

3 49

,4 50

1 51

2 52

3 53

,4 54

5 55

6 56

3 57

4 58

5 59

6 60

3 61

8 62

$ 63

sth even-moment loss

s:l s:2

2 2

3 3

4 4

5 5

2 2

3 3

4 4

$ 5

2 2

3 3

4 4

9 5

6 6

7 3

4 4

9 5

I0 2

7 7

4 4

5 5

2 2

11 3

4 4

9 5

2 6

7 3

4 4

9 5

6 6

3 7

First positive change

s:4 s:l

2 6

3 3

4 4

5 5

2 6

3 7

4 8

I (opt) $

2 6

3 3

4 4

5 9

6 6

7 7

4 4

$ 9

6 6

7 7

,4 8

5 5

6 2

7 3

4 4

5 $

6 6

7 7

4 4

5 9

6 6

7 7
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VII. OPTIMUM AND MINIMAX SEQUENCES

A. Optimally Distinguishable Sequences

For any sequence a having period p, let R,_ denote the

largest value of out-of-phase correlation

R,u = max {Ro(m)] (297)
m_O (p)

The minimum of such maximum correlations taken over

all sequences a with the specified period will be denoted

a. = min {a..} ( gs)
Cl

As shown in Part V, there are certain lower bounds on

the maximum out-of-phase correlation values of a se-

quence, according to its period. Those sequences which
achieve these lower bounds, when they exist, will be

called minimax sequences.

Those sequences whose maximum out-of-phase corre-
lation is R_ are the best that can be hoped for, as far as

seeking sequences having low out-of-phase correlation is
concerned. In some sense, however, it is advantageous

and desirable, ff a is a sequence having R_ as its maximum

out-of-phase correlation, that R,(m) assume the value R_
a minimum number of times for m = 1, 2, ..., p- 1, be-

cause this would tend to increase the probability of correct

detection. For this reason, we define an optimal sequence,

for a specified period p, as one whose maximum out-of-

phase correlation is R_ and whose correlation function

R(m) takes on the value Rx the least number of times

per period.

When p is of the form 4t + 3, there often exist se-

quences with Rx = - 1; these are the so-called pseudo-

noise sequences (Ref. 57, 58). They are ideal from the

point of view that they are minimax, optimal, and R_ is
the least of all lower bounds for any period. In fact, it

does not necessarily follow that optimal sequences are

minimax, or conversely.

The known cases for which such ideal or pseudo-noise

sequences exist are (Ref. 59)

1. p = 2" - 1 (linear sequences)

2. p = 4t - 1 is prime (Legendre sequences)

3. p = 4x _ + 27 is prime (Hall sequences)

4. p = t(t + 2), both t and t + 2 are prime (twin-prime

sequences)

When there are no sequences having ideal two-level

autocorrelation, there are often those whose correlation

takes on only three values: an in-phase value (p) and two

out-of-phase values. A particularly important case arises

when the two out-of-phase correlation values are sepa-

rated by 4 (the minimum separation). In fact, we may

treat two-level correlation as a special case of three-level
corrrelations in which one of the levels occurs 0 times.

In our treatment of three-level correlations here, we do

not exclude the possibility that one of the three levels
does not occur.

In case p _ 3(4), but no pseudo-noise sequence of this

period exists, we relax the minimax condition somewhat

to include an upper bound of +3. A minimax sequence

is thus one whose maximum out-of-phase correlation R_

is given by

aM

0 if p --==0(4)

1 ff p _ 1(4)

2ffp----2(4)

-- 1 if p _ 3(4) and a p-n sequence exists

3 ff p _ 3(4) and no p-n sequence exists

(9.99)

We connect optimal and minimax sequences by the fol-

lowing theorem:

THEOREM: If a is a balanced sequence with three-

level autocorrelation, in which the two out-of-phase cor-

relation values differ by 4, then a is both optimal and

minimax.

Proof: The three correlation values are p, the in-phase

value, R, the maximum, and R- 4. Suppose R occurs

No ( >_ 0) times in the correlation function. Then,

P

a, (n)
7t--I

= p + Noa + (p - Na - 1)(a - 4) = ol

(3oo)

where D, is the imbalance of a. Solving for No produces

the relation

(R - 4)(p - 1) + (p - D2,) (30i)
N,=- 4

By hypothesis, a is balanced: D z_ = 0 or 1. The fact

that N, >_ 0 implies that
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(R - 4)(p - 1) + (p - D i) < 0

R-4< -P-D2-< -1+_
-- p--1 --

D_. - 1

p--1

(309,)

However, since R is an integer, we may omit the fraction

(D_ - 1)/(p - 1). This produces the result that

n _<3 (s0 )

In the cases pro0, 1 or 2 modulo 4, a is dearly a

minimax sequence. If p = 3(4), we may either have
R = - 1 or R = 3. Let us assume R = 3 in this case and

show that this includes the other also. Substitution of

R = 3 into the equation for N, gives

N==- -I(p-1)+(P-1) =0 (804)
4

This states that if p --- 3(4) and R = 3, then this value of

3 is taken on 0 times, and hence, a is pseudo-noise.

We should interrupt the proof at this point to note

from the above that if no pseudo-noise sequence of

length p -----3(4_ neither does a balanced three-
level sequence. _ ....

In all the cases above, the fact that a is a balanced

three-level sequence implies that it is also minimax. To

prove that it is optimal, we need to show that N= is the

least integer preserving the minimax property. From the

foregoing discussion, we need consider only p _. 0, 1,

2(4), since balanced three-level sequences of length 8

modulo 4 are pseudo-noise and thus optimal.

Let fl be an optimal sequence having the same period

as a; fl is then a minimax sequence whose maximum cor-

relation value occurs, say, No times in the correlation

function and No < N., Let R_ denote its average non-

maximum out-of-phase correlation and D_ its imbalance:

i=l

(and clearly, D R > D_,) (805)

The sum of correlation values over a period is

I1=1

= =n + NoR. + (p-No-I) a, (s0 )

Solving this for No produces the relation

No = - (p-1)a, +
R,- R_

(307)

Clearly, R, < Ru - 4. If Rt = Rw - 4, fl is a three-

level sequence; the condition No < N° implies that

O_ _< D: (308)

Because of the balance of a, the inequality cannot

hold; consequently, D 2 = D2, and No = Na. Therefore,

if R1 = Rx - 4, a is optimal.

Suppose, on the other hand, that R_ < Ru - 4. The

condition No < N is equivalent to

R1 (p-l) + (p-D_) (R_-4) (p-l) + (p-D2_)
R. -- Rt >-- 4

(309)

By simple manipulation, we can rearrange this to read

1 1 1

R_ " R,)

+ - D', (Sl0)
R,- R1

This inequality is not affected ff (D_ - D2,)/(Rx - R,)
is dropped (it is non-negative), nor if we divide both

sides of the resulting inequality by the positive term

(_ - [1/(R. --R,)] ). When this is done, we obtain

D, _ >a,(p-1) + p (311)

The balance of a assures us that D_ _< 1. Consequently,

1>__ R.(p-1) + p
(812)

R,< - i

This can certainly not hold for p _ 0, 1, 2 (4) if p > 2.

The case p m 3(4) has already been disposed of. Hence,

a contradiction is reached, indicating that Rt is not

strictly less than Ru- 4. We thus revert back to the

case R_ = Ru- 4, and a is optimum, completing the

proof of the theorem.

The Legendre (Ref. 60) symbol (x/p) is defined by

0 if x _--- 0 mod p (p a prime)

1 ff x is a square, mod p

- 1 ff x is a non-square, mod p

Those x with (x/p) = 1 are called quadratic residues.

An equivalent way of defining the Legendre symbol is

as follows: since the integers modulo p form a finite

field, the multiplicative group is cyclic. Let/_ be primitive

in this group; then for every n _ 0, there exists a unique

r in the range 1 < r < p -1, such that
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Then, define

_" = n (313)

That these two definitions define the same quantity

can be shown as follows: ff n is a square, there exists an

r such that/_" = x2 = n. Suppose r is odd. If this is the

ease,/_,_i = x= would imply _ = (x/_-') 2. But _ is primi-
tive and hence must have order p - 1, whereas a square

can have at most order (p - 1)/2. This contradiction in-

dicates that r is even and (n/p) = 1 for square n. Sim-

ilarly, (n/p) = - 1 for non-square n.

It follows trivially from the latter definition that

(315)

for all n and m modulo p (that is, the Legendre symbol

is a group character) (Ref. 61).

THEOREM: The Legendre sequences for every prime

p produce a balanced, optimal, minimax sequence of

period p whose autocorrelation has three or fewer levels.

Proof: Define a as follows:

1 nmO(p)

(316)

First, a is balanced because

p-Z p-t

o= ,,.
.=, ,=1 (317)

--'l+0=z

The group property of the Legendre symbol allows us to

compute R.(m) easily:

p p-I

Isss_

8=i II_.I

"_-" (318)
p-i

11--1

Since n _ 0 in the summation terms, there exists some

integer, call it n -1, such that n(n -1) =- l(p). Then,

(-_/=/_/(.l+yn-1/=/_/(_/ (319)

As n goes through the values 1, 2 ..... p - 1, x goes

through 2, 3, ..., p, in some order. As a result,

g=-2

= (_)[1 + (-_)] - 1

(3z0)

We now need to know when - 1 is a quadratic residue;

ff t_ is primitive modulo p,

p-1

_,--_-= - 1 (321)

Therefore, -1 is a residue whenever (p - 1)/2 is even;

i.e., when p == 1(4). Otherwise, when p E 3(4), -1 is a
non-residue. Consequently, if p _ 8(4),

R=(m) = - 1; m _ 0(p) (322)

and a is pseudo-noise, as stated earlier. If p _-1(4), on
the other hand, a has three-level autocorrelation:

and R°(m) takes on the values p, 1 and -3.

In either ease, we apply the preceding theorem, and

optimality of a is assured. If ao had been set equal to
-i instead of + I, the result would be unchanged for

p m 3(4), but for p == I(4),

R,(m)= -2 (-_) - 1 (324)

also an optimal correlation function.

B. Minimax Sequences

From the preceding Section, optimal minimax se-

quences are known to exist whenever the period is prime,

or of the form 19 = 2" - 1 or p = t(t + 2), with both t

and t + 2 prime. In this Section, we shall show the ex-
istence of several other classes of minimax sequences. We

extend the quadratic-residue concept and derive condi-

tions under which sequences made by term-by-term and

Kronecker products may be made minimax. Some near-

optimal sequences result and, in a few special cases (e.g.,

p = 9), a three-level optimal sequence exists.
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1. Jacobi Sequences

We begin by extending the quadratic-residue sequences.

If p and q are different primes, the Jacobi (Ref. 62) symbol

(n/pq) is defined

Brauer (Ref. 68) showed that ff proper values of ___1

are inserted in the sequence (3, = (n/pq)), where
(n/pq) = 0, a pseudo-noise sequence could be made ff

p = q ± 2. We can prove an analogous theorem.

THEOREM: If p and q are prime and I P - q I is 4

or 6, then a minimax sequence of period pq exists.

Furthermore, when p = q + 4, there exists a sequence
with three-level autocorrelation and imbalance 3.

To prove the theorem, define the sequence a termwise
as follows:

n _ 0(v),n _ 0(q)

.. 0(vq) (39,6)
-- - n-----0(v),n _ 0(q)

n _ 0(p), n _, 0(q)

We wish. to choose a, b, and c either + 1 or -1 so that

the correlation function of a is most desirable. Let A be

the generating function of a:

pq-1

A = E a, x" (327)
s=O

Likewise, define the component generating functions

_t'-1

I1=1

q-I

B = b S xP" (328)
_--0

p-1

n=0

We may then express A as a sum of these components

in the following way:

A = Q + B + C + (a-b-c) (329)

According to the analysis in Part VI, the generator R

of R,(m) is merely

AA* _ R rood x_ - 1 (330)

From the structure of the components, B* = B and

C* = C. By routine calculations, we can verify that

B 2 = qbB

C 2 pcC
___ (mod _q- 1) (881)

BC be )_ x"

For convenience, set h = a - b - c. The correlation of

a is

AA* =QQ" + (Q + Q*)(B + C) + h(Q + Q*)
(_o.)

+ (2h + qb)B + (2h + pc)C + 2BC + h*

The terms in QQ* are the correlations of quadratic resi-

dues which, because/9 and q are coprime, are of the form

(p-- 1)(q -- 1)Pq-_ n -(p-l)

_ ]-(q-l)
_+1

m _ O(pq)

m=_O(p), m _ O(9)

m _ O(p),m -- O(q)

m _,_ O(p), ra _j_ O(q)

(aaa)

Coefficients in Q + Q* are (n/pq) + (-n/pq); we thus

have Q + Q* = 2Q or 0, according as -1 is a square or

non-square modulo pq. Recall that - 1 is a square modulo

k whenever k is a prime of the type 4r + 1, and a non*

square when k is a prime of the type 4r + 3. Hence, ff

p and q are primes of the same type,

O + O.= o (aa4)

Finally, consider the product

l_q-1 q-1

I_=0 nt--O

pq-1 q-1

*=o ..=o k Pq /

(_)

Since [(k + mp)/pq] = (k/p)[(k + rnp)/q], the sum on

m causes k + mp to go through all residues modulo q

exactly once and gives a vanishing sum

QB = 0 (886)

By symmetry, likewise,

pc = 0 (337)
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Substitution of these values in the expression

R = QQ" + h(Q + Q') + (2h + qb)B + (2h + pc)C + h2

(aSS)

yields the following correlation values:

a(m) =

'pq

l+2bc

+ 2(a-b-c)(_)

-l+2ac-q+p

-l+2ab-p+q

m = O(pq)

m _/gJO(p), m r/gsO(q)

m _ 0(p), m =- 0(q)

m m O(p), ra _ O(q)

(_9)

where g = 0 ff p and q are different type primes, and

g = 1 ff p and q are primes of the same type.

Note thatffp=q +2, a =b= -c =l, thenR(m)

takes on the value -1 for all out-of-phase m. This veri-

fies the previous asssertion concerning the existence of

pseudo-noise sequences whose periods are products of

twin primes.

Ifp and q dil_r by 6, set a = b = -c = 1. By

Eq. (389) above,

a(m) =

pq m -- O(pq)

-I m_O(p),m_O(q)

+ 3 m ¢. O(p),m -- O(q)

- 5 m -,. O(p), m _ O(q)

(a4o)

This is a minimax sequence if no pseudo-noise se-

quence of length p(p + 6) exists (of which none are known

at present). A sequence of period 55 made this way appears

in the Appendix.

In the casep = q + 4, seta = b = -c = 1. As a

consequence,

-+2 m
a(m) = _-_ " _ O(p),m _ qq)

m _ (XP), m _ 0(q)

- m _ 0(p), m _ 0(q)

(34z)

We compute the square of imbalance by

pq-X

= )_a(m)= pq + (p-l) -3(q-l)D_

._-o (342)
pq-1

m---o

giving an imbalance of 3. If no three-level balanced

sequence of such periods exist, these are optimal. The first

possible example would have period 77. (The Appendix

gives a p = 21 sequence which/s balanced.)

This completes the proof of the theorem. We note in

passing that if p and q differ by more than 6, the maximum

out-of-phase value of R(m) is always greater than the
minimax value.

Going back to the definition of the quadratic residue,

one sees that there are rather obvious symmetries involved.

The quadratic residue sequences for p _ 1(4) are sym-

metric about ao, and for p _ 3(4), antisymmetric about ao.

These symmetries are carried over into the Jaeobi se-

quences as well. The point is this: all these sequences

could have been synthesized by the methods of Part VI,

given the correlation function (had it been known).

2. Term-by-Term Product Sequences

Suppose p and q are relatively prime, and let a and #

have periods p and q, respectively. The correlation of

= a'# is, of course,

at(m) = a,(m) a_(m) (8_)

THEOREM: If -/ = a'# is minimax, a has period p,

B period q, (p, q) = 1, and p is divisible by 4, then R.(m)

= 0 for m _ O(p), p is pseudo-noise, and y has three-level
autocorrelation.

Proof: Under the hypothesis that _, is minimax, for all

m _ O(pq),

a_(m) = e,,(m)e_(m) < o (e,.)

For m = nq, Rr (nq) = qR, (nq) <_ O. This yields

a,(m) < o (can)

for all m _ 0(p). Hence, a is minimax. Similarly, when

m = np, R (np)= pRt_ (np)< 0, and R# (m) must be less

than or equal to zero for all m _ 0(q). But this can only

occur if/_ is a pseudo-noise sequence, because q must be

odd. If B is taken to be pseudo-noise, for each m _ 0(p),
we obtain

a.gm) = -a.(m) _< 0 (846)
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or R,(m) >_ 0. This is compatible with R,,(m) <_ 0 only if

R,(m) = 0 m _ 0(p) (847)

There are, then, only three levels in Rr(m): pq, 0, and - p.

The only known sequence having the property of Eq.

(847) has period 4, equivalent to

a: + + + - (848)

It is conjectured that there are no others; in fact, it has

been shown (Ref. 64) that if others do exist, p >_ 144.

To compute the imbalance of 3,when p = 4

2 2= O. 4 (349)

giving ID _1 = 2. The out-of-phase values are, then, 0
and - 4. This three-level autoeorrelation and near-balance

indicate the near-optimality of term-by-term product se-

quences of period 4q when a pseudo-noise sequence exists

having period q. Examples of such sequences are given

in the Appendix with periods 28, 44, and 60.

We may assume that neither p nor q is divisible by 4

and assign p 3> _ -_ 0(pq),

r (nn) = p a (nn) _<R.

Rdm) < R...._ (850)
P

If p > 3, Rdm) < 1, which implies that/_ is pseudo-noise.

Likewise,

nr(nq) = q n.(nq) _ S.

n,(m) _<a. (851)
q

and ff q > 8, a must also be pseudo-noise. Since we have

chosen p > q, we have the result that ff 3, = a'B, q > 3,

and 3' is minimax, then both a and fl are pseudo-noise. It is

dear that ff ct and # are pseudo-noise, then 3, is minimax.

If q = 2, RK = 2 and R,(m) <_ 1; so p E 1 or 3(4).

R.r(ra) = (-1)" 2a,(m) _< 2 (852)

Since (2, p) = 1, R,,(m) must satisfy both

R,(m) > - 1

a.(m) _<1

Consequently, a must have two-level autocorrelation with

the out-of-phase value equal to + 1 or -1.

The remaining case is q = 3; fl is then pseudo-noise,

because the only sequences of period 3 are pseudo-noise.

When p E 1(4), and when no pseudo-noise has period

3p, R_ = 3; a is a minimax by Eq. (351). The values R_,(m)

assumes are then 3p, - R_(m), and 3R°(m). Hence, if a

has minimax three(or less)-level autoeorrelation (p, 1, -3),

3, is minimax.

When q = 3 and p _ 3(4), Eq. (351) requires that

R,(m) < 0, and a must be pseudo-noise. This proves the

following theorem:

THEOREM: If 3, = a*/3 is minimax, the periods p and

q of a and/3, respectively, are relatively prime, and p > q,

then,

1. q = 2, and a has minimax two-level autocorrelation,

or

2. q = 3, p ---_ 1(4), and a has three(or ]ess)-level mini-

max autocorrelation (p, 1, - 3), or

3. q >_ 3 and both a and fl are pseudo-noise.

3. Kronecker-Product Sequences

Kronecker products sometimes yield minimax sequences

ff the factors are properly chosen. By considering the

cases which arise, we prove the following:

THEOREM: Let 3, = a (_/_ be a minimax sequence for

which the period p of a is greater than 2. Denote the

period of fl by q, and assume that no pseudo-noise se-

quence has period pq. Then,

1. ff p _ 0(4), then Ro(m) = 0 for m _ 0(p) and fl is a

Barker sequence with q = 2, 3, 7, or 11.

2. ff p -----1(4), a must be minimax, and either

a. q = 2 and R,(m) + R,(m+l) >_ -2 for all m,
or else

b. q = 3, a has three-level (or less) autocorrelation

(p, 1, -3), and/3 is either + +- or - + +, or

their complements.

8. p _ffi2(4) may not occur.

4. if p _ 3(4), a is pseudo-noise, and either

a. p > 7, fl is a Barker sequence with q = 2, 3, 7, or
11, or else

b. p = 3, 13 has three-level (or less) autocorrelation,

and an aperiodic correlation function Ta(n) satis-

fying
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Proof: Recall that when mq + n _ 0(pq), 0 _< n < q,

the condition that 7 is minimax is

R.r(mq + n) = R°(m + 1) Ro(n )

+ To(n) JR,(m) - R,(m + 1)] < R,

I_(n) = To(n) + To(q-n) (354)

If we alternately set m and n to zero, we derive two con-

ditions on a and fl: for out-of-phase values of m,

a,(m) _< < 3_
q -- q (355)

2R_

a°(m) <-- p+a,(1)

[p+R,(1) cannot vanish for p > 2]. The minimax value
Rx is congruent to pc? modulo 4. For every q, a must be a

minimax sequence, and, in fact,

a,(m) < 2 (856)

This rules out p == 2(4) immediately. For every q > 3,

a,(m) _<o (s57)

Before considering specific cases for p, we show q

0(4): let us assume that q is divisible by 4 and demonstrate
that this leads to a contradiction. Both a and//are such

that

n,(m) < o (s s)
n0(n) < o

Let _ = {n: R_(n) = 0};_is not empty because 0 is the
minimax value of R_(m). For every no in _,

--To(no) = Ttj(q -- no) (859)

But then, by Eq. ($54),

R_(no) = T_(no) [p - R,(1)] _< 0

R_,(q - no) = T_(q - no) [p - R=(1)] < 0 (860)

= - T_(no) [p - R,(1)] _< 0

This occurs only ff T0(no) = 0 for every no in _, indicating

that every such no must be even. In Part VI, we showed
that the minimax value must be attained at least a certain

number of times; namely,

No >_37q- 1 (881)

But there are only (q/2)- 1 even integers in the range 1,

2,..., q - 1. There must, therefore, be some odd integer

n, with R,(m) = 0; no then belongs to Y/, contrary to the

fact that only even integers may belong to _.

We need only consider Kroneeker products with q

0(4) and p _ 2(4).

Case I: p _--- 0(4). By Eq. (355),

a,(m) < o
(868)

Re(m)_<o

First, R,(m) must be zero for all m ¢ 0(p), for suppose

there exists a value of m, say rr_, such that Ro(mo) were

less than zero but R(mo + 1) = 0. For each n _ 0(q),

Ry(moq + n) = To(n) Ro(mo) <_ 0
(sos)

Te(n) >_ 0

But then, by Eq. (854), (855), and (363),

0 >_ R_(n) = T_(n) + T_(q -- n) >_ 0 (864)

or

lldn) = 0

and this contradicts the hypothesis that q _ 0(4). Con-

sequently, there can be no such n_, and, as a result,

Ro(m) = O, all m _ O(p) (865)

The only sequences known to have this property are

those equivalent to + + + -.

The second part of Eq. (862) limits the values q may take

to either 2 or the period of a pseudo-noise sequence. For

q = 2, Eq. (354) reduces to

RT(2m) = 2R,(m)

RT(2m + 1) = -- R,(m) - R°(m + 1)

giving a three-level autocorrelation (2p, 0, --p).

Evaluation of Eq. (854) for m = 0 gives

T_(n) [p - R,(1)] < 0
(867)

To(n) < 0 "

This, coupled with the fact that when n is even, q - n is

odd, and vice-versa, and

R_(n) = T_(n) + r_(q -- n) = -- 1 (868)

restricts the aperiodic correlation To(n ) to either 0 or - 1.

Sequences fl such that

Ire(,,)l< x, 1 _ n < q (869)

are called Barker sequences (Ref. 65). There are only three

pseudo-noise Barker sequences (Ref. 66):
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q=3 t: ++--

q=7 /3: +++--+-

q=ll /3: +++------+--

(370)

all of which have Ttj(n) <_ O. Inserting these values in

Eq. (354),

¢

l qRo(m) when n = 0

I
R.y(mq + n) = R,,(ra + 1) when Tfj(n) = 0 (371)

R,(m) when T_(n) = - 1

The resulting Kronecker product has three-level auto-

correlation (pq, O, -p).

There are, therefore, minimax sequences with R_ = 0

of periods 2p, 3p, 7p, and llp which can be made by

Kronecker products whenever a sequence a has Ro(m) = O,

all m _ 0(p).

Case II. p E= 1(4). By Eq. (355), q must be 3 or less,

and a is minimax. Consi_der q = 2. The correlation of -/is

restricted by

R./(2m)--- r2R°(m) <_ 2
(372)

a (2m + 1) = - [R.(m + 1) + a.(m)] <

The second of these is the condition stated in the theorem.

Next, let q = 3. All period-3 sequences are equivalent
to + + -, - + +, or + - +. The first two of these have

and the third has

T_(n): 3, 0, -- 1 (373)

T¢(n): 3, 0, + 1 (374)

When fl is one of the first two types, R_(m) must satisfy

/tr(3m) = 3a,(m) < 3

Rr(3m + 1) = - R,(m + 1) < 3 (375)

R.r(3m + 2) = - R°(m) < 3

Whenever a has three-level autocorrelation (p, 1, -3),

these equations are satisfied, resulting in four-level auto-

correlations of a (3p, 3, -1, -p). When a has two-level

autocorrelations (p, 1), y also has four-level autocorrelation

(3p, 3, - 1, - p). If a has any correlation less than - 3, _ is

no longer minimax.

Next, when fl is the third type,

Rr(3m) = 3R,(m) < 3

a.r(3m + 1) = - R,(m + 1) < 3 (376)

Rr(3m + 2) = Ro(m) - 2Ra(m + 1) __<3

In particular, the third of these, evaluated at m = 0, gives

Rr(2) = p - 2Ro(1) _< 3 (377)

which can be rearranged to read

-P-__< R°(1) _< (878)1

This can hold only for p = 5; but there exists a pseudo-

noise sequence with period 15, contrary to the theorem

hypothesis. There are, then, no sequences of this third type.

Case III: p--_ 3(4). The restriction in the first half of

Eq. (355) limits a to pseudo-noise; the remainder of Eq.

(855), together with Eq. (354), evaluated at m = 1, limits

P as follows:

Re(n) > -- R jr for all n

(379)

Rfj(n) < _ for all n _ 0(q)
p 1.-- .

Consequently, fl must be minimax three-level or less; Eq.

(379), together with Eq. (354), evaluated for m = 0, pro-

vides the necessary and sufficient conditions which /3

must satisfy.

T¢(n) < R_ + Rf_(n) < _ (380)
-- p+l - p+l

For all p _> 7, the periodic correlation of fl would have

an upper bound of zero, and thus an out-of-phase cor-

relation bounded above by zero. As a result, either q = 2

or else t, as well as a, is pseudo-noise. Further, the upper

bound T¢(n) <_ O, plus the restriction of fl to pseudo-noise,

requires that fl be one of the pseudo-noise Barker se-

quences. For each of these, q = 2, 3, 7, or 11, both Eq.

(379) and Eq. (380) are satisfied, giving the result stated
in the theorem.

On the other hand, if p = 3, the necessary and sufficient
conditions reduce to

- RN < aft(n) <_ Rjt

aw + R_(n) < 1 (881)
Ta(n) <-- 4

When q _ 3(4), R_ = 1, so/3 must be a pseudo-noise

Barker sequence, q = 3, 7, or 11; also, q = 2 satisfies

Eq. (381).
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In the final two cases, q _ 1(4) and q _-- 2(4), q > 2, fl

must have three-level (or less) minimax (periodic) cor-

relation and an aperiodic autocorrelation which satisfies

0 if Re(n ) <0
T (n) < (382)

1 if Re(n)>O

That sequences of this type exist may be verified by

example: Suppose q = 6, fl = + + - + - - ; then,

Re(n): 6, -2, -2, 2, -2, -2
(383)

T_(n): 6, --1,0, +1, --2, -1

Next, forq = 9, fl = ++--++------+,

Re(n): 9, 1, -3, -3, 1, 1, -3, -3, 1
(384)

Ta(n): 9,0,-3, 0,1,0,-3, 0,1

There are also Barker sequences with q = 5 and 13,

which naturally satisfy Eq. (381) and (382). This com-

pletes the proof of the theorem.

Call (Ref. 67) has shown that Kronecker squares of

pseudo-noise Barker sequences satisfy Eq. (382). Equa-

tions (383) and (384) were made, respectively, from Kro-

necker products we can designate as 3 @ 2 and 3 _ 3,

the latter being one of Coil's squares. However, Coil's

squares, except for the 3 (_ 3, violate the first part of

Eq. (381).

C. Compiling the Minimax Sequences

By using the three methods indicated in Section B, we

can compute optimum and minimax sequences for all

Pedod

P

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Table 6. Theoretical minimax sequences

Generation

method

2e2

quadratic residue

302

linear shift register

402

3e3

5o2

quadratic residue

3*4

quadratic residue

7e2

linear shift register

quadratic residue

902

quadratic residue

703

11 @2

quadratic residue

13e2

30303

4*7

quadratic residue

15e2

linear shift register

3011

Period
Status

P

optimum 34

optimum 35

optimum 36

optimum 37

optimum 38

optimum 39

(10, 2, --2, --6) 40

optimum 41

near optimum 42

optimum 43

(14, 2, --2, --6) 44

optimum 45

46

optimum 47

(18, 2, --2, --6) 48

optimum 49

50

(21, 1,--3,--7) 51

(22, 2,--2,--10) 52

optimum 53

54

55
(26, 2, --2, --14)

(27, 3, --I, --5) 56

optimum (?) 57

optimum 58

(30, 2,--2,--14) 59

optimum 60

61

(33, 1,--3,--11) 62

Generation

method

Jacobi symbol

quadratic residue

19"2

1303

quadratic residue

2102

quadratic residue

11"4

1513

2302

quadratic residue

707

2502

1703

quadratic residue

Jacobi symbol

1903

quadratic residue

15"4

quadratic residue

3102

Status

optimum

optimum

(38, 2,--2,--18)

(39,3,--I,--13}

optimum

(42, 2, --2, --6, --22)

optimum

optimum (?)

(45, 1,--3,--15)

(46, 2, --2, --22)

optimum

(49, I,--7]

(50, 2, --2,--6,--26)

(51, 3,--I,--9,--17]

optimum

(55, 2, --1, --5)

[57, I,--3,--19)

optimum

optimum (?))

optimum

(62, 2,--2,--30)

Netil p • q = Kronecker product of sequences with periods p and q.

p * q _ termwise product of sequences with periods p and q.
Numbers in parentheses indicate the cl_relatlon levels.
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periods commensurate with theory. The first theorem of

Section A can be applied as a guide to optimality. Even

when this theorem is not applicable, namely, when we
have found a non-balanced or non-three-level minimax

sequence, the desirable qualities of minimax sequences
are evident: near-balance and as few autocorrelation

levels as possible.

Table 6 shows the existence of minimax sequences syn-

thesized by the methods of this Part. When more than

one method produces minimax sequences of a given

period, only the one whose autocorrelation has the least

number of out-of-phase maxima is listed.

If we were to compare minimax sequences made from

products to those found by iterative computer search, we

would see, for periods less than 63, at least, that the

computer-found sequences usually have fewer out-of-

phase maxima. Of course, when a sequence synthesized by

methods of this Part is optimal, or extremely near optimai,

the computer results prove inferior. For this reason, only

a few product sequences appear in the Appendix.

VIII. TRANSFORM THEORY OF BOOLEAN SEQUENCES

In this Part, a Fourier-type theory is developed for

Boolean functions. Through this theory, we will be able

to develop optimal sequences to be used in the minimum

aequisition-time receiver.

A. Analysis of Discrete Real Functions

Suppose f is any real function of binary (0, 1) variables

x, x2 .... , x,. The domain _ of f is then a set of 2" binary

vectors x = (xl, x_, ..., x,,)

= (x= (xt, x2,...,x,); xa--=0orl, i= 1, 2,...,n}

(385)

Since f is completely specified by its value at each of

these 2" points in _, we may consider f as a member of
a 2"-dimensional vector space ct_.

co = {[ = (f_, f_, ..., re'); /, real) (886)

For any two elements s and x of StY, define the function

(s, x) = 2-"/_ H (- 1)', _, (387)
i=1

When s is fixed, 4_is a function of x lying in q?. These are
the Rademacher-Walsh functions (Ref. 68) and will form

the basis of our Fourier theory.

LEMMA: The set (_(s, x); s in _) is an orthonormal
basis of cU.

Proof: We merely need to show that any two elements
in the set are orthonormal. Let s and w be members of

Then,

4_(s, x) ¢,(w, x) = 2-" iX ( --1)("÷_*')_'

= 2-" FI ( -1)(',_, )',
i=l

#d =0

(3ss)
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This inner product vanishes ff any s, _ w,; when all

wi = si, each sum is 2, or

(,. x) _(w. x) = (889)syaw
x

The set {_} is a set of 2" orthogonal unit vectors in q)
and must therefore be a basis.

Now. given any function f in q J, we can expand f in
terms of this basis:

f(x)= _ F(s)_(s,x) (3_0)

There are 2" coefficientsF(s),and hence,F isa member of

q_; these two corresponding members of q: are a trans-

form pair.

LEMMA: f and its transform F are related by

/(x)= 2 F(s)_(s,x)

F(s)= 2/(x) _(x,s)

Proof: The first equation defines the coefficients F(s);

the second is obtained by finding the inner products of

f with the new basis:

2/(x) _b(x,.)= 2 2 F(w)_(w, x)_(s,x) (891)
• w •

= F(s)

From this, a dual of Parseval's theorem (Ref. 69) follows:

THEOREM (Parseval):

2 f2(x)= 2 F2(s)

Proof: An orthonormal linear transformation in a vector

space preserves distances.

Now, ff x and y are in _E, denote by x _ y = z the
modulo 2 vector sum in ._:

z_ = x_ + yi mod2 (392)

For any fixed y, f(x _ y) is the y-translate of f(x).

LF.MMA: If g(x) = f(x(_)y),then G(s) = 2"/2_(s,y) F(s).

Proof:

G(o) = _ g(x) q_(x, ,) = _ f(u)_(,, u _y)

But

75

_(s, u _ y) = 2-"/2 H (--1) "'(', +"_ = 2"/2 q_(s, u) _(s, y)
4=1

(a93)

and the theorem follows.

THEOREM: (convolution): f(x) = g(x) h(x) if, and

only if,

F(,)= c(s e w)n(w)= 2.:.' c(w)m, ew)
w

Proof: By the lemma above, it follows that f(x) =

g(x) h(x) if, and only if,

f(x)= 2 2 G(s)H(w)_(s, x)_(w, x)

• - (3_)

--2E2':-- x,
from which the theorem is clear.

Corollary: F(s) = G(s) H(s) if, and only if,

f(x)= 2-"/."_ g(x _ y) h(y)

Next, there is the dual to the "initial" value theorem.

THEOREM: (initial value): Let f and F be a transform

pair in q). Then,

x) = 2-/2F(O)

and

F(s)= 2-/2f(0)
l

Proof:/(x) = _ F(s) 6(s, x). Note, however, that

2":: _(0, x) = 1 for all x. Hence, summing on x,

f(") = 2 F(,) _(,,,,,)2"/_ ,/,(0,,_)= 9../, V(O)

(895)

The same analysis applies with slight modification to

give the "final" value.

Corollary (final value): Let f and F be a transform pair

in cO. Then,
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and

_ f(x)(- i)',+',+.....• = 2_/-_F(I,1, ...,I)

F(s) ( - I)',+': ...... . --=2"/: f(l, I ..... 1)

Using the initial-value theorem, we obtain an impor-
tant bound on the transform eoefllcients.

THEOREM: Suppose that f is bounded: I f(x) I _< M,

for all x. Then, .

-- 2 "/_ M _< Fro,. (s) __<2-'/' f(0) _____Fm.. (s) < 2"/z M

Proof: By the initial value theorem, X F(s) = 2"/2 f(O).

Obviously, then,

2" Fro,. __<2n/2 f(0) _< 2" Fm_ (896)

By hypothesis, f is bounded by M; by the triangle in-

equality,

--l _<2 If(-It-<2-,.Mir(,)l
-_.._.._.p-- (897)

from which the tl_orem follows.

Let z, be an operator on _ which, when applied to x,
permutes the indices:

x = (xl, xz, • • .,x_)

wx = (xt 1, xC:, . .., x¢,)
(898)

THEOREM: If g(x) = f(,r x @ v), then
G(s) = 2"/_ ¢(v, ,, s) F(,, s).

Proof: By direct evaluation.

G(.) = _/(,rx @ v)4_(x, s)= ___ f(x @ v)

= _ f(x) ¢,(,_-'x _ _-' v, s)

= 2"/' ,(_--' v, s) _ t(x) 4'('_-'x, s)

= 2_/' q,(v,,_s) F(_-s)

and the theorem is proved.

6(,,-, x, s)

(399)

Let _k be the set of distinct permutations, which map

u k = (1, 1, ..., 1, 0, ..., 0) of k one's onto all vectors of

k one's.

,_ = (.:. u__=_, u_if., _ _) (4o0)
Then f can be expressed in terms of S_ and u k as follows:

,(x)= _ _ F(_u k) _(auk, x) (401)
k=0 _r( s_

By the previous theorem, if g(x) = [(,_ x G v), then,

G(a u k) = 2"/_ _(v, _r cru k) F(w a u k) (402)

The importance of this expression lies in the fact that, as

Golomb (Ref. 70) noted for Boolean functions, for each

k = 0, 1,..., n, the sets

{2"_ ,iv,. -_) r'(. u_)}
are invariant under permutations ,r and complementa-
tions v of variables. Golomb calls these sets invariants of

the logical family (f(,r x @ v)). Ninomiya (Ref. 71) rec-
ognized this in an earlier paper, in which he defined the

Boolean functions {f(_r x)} as congruence classes and the

Boolean functions {f(_- x @ v)} as generic classes. A func-
tion f which is left unchanged by such operations must

be invariant in each of the n classes; stated more pre-

cisely, we have the following result:

THEOREM: /(x) = f(_r x @ v) for all x if, and only if,

F(.) = 2"/_¢,(v,_-s) F(_ s)

Corollary: If f(x) = f(x _]_ v) for all x, then for each s,

either F(s) = 0 or else the inner product (v, s) = 0

modulo 2.

Proof: f(x)= [(x @ v) implies F(s)= 2_/2 ¢(v, s) F(s).

Hence, for each s, F(s) must be zero or else 2"/_ 4,(v, s) = 1.

The latter result is possible only when

fi ( - 1),,.,= ( - 1)_,,_,= 1
i=1

indicating that (s, v) = modulo 2.

B. Boolean Functions

Any member _ of q_ whose values on _ are ± 1 we will
call a Boolean function. The set of Boolean functions we

denote _.

= (/: f in cO; lf(x)l = I for all x in IE) (408)

In the more usual notation, a Boolean function on the

values 0 or 1. If we have recourse to such notation, we

will denote the function as f" and relate it to f by

f(x) = ( -- ly'" (404)
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THEOREM: F(s) is the transform of a Boolean func-

tion f(x) if, and only if,

F(s) F(s _w) = 2" 8(w, 0)

that is, if, and only if, it has norm 2 _ and is orthogonal

to all of its w-translates.

Proof: First, f is Boolean if, and only if,

f2(x) = f(x) f(x) = 1 = 2"2 ¢(o, x) (405)

By the convolution theorem, the result is immediate:

2"/2 8(0, w) = 2-./2 _-_ F(s) F(s (_w) (406)

THEOREM: If f is a Boolean function,

--2 "/' < Fmtu __<2 -'/' f(O) < Fm,, ___2 "/'

Proof: f is bounded by M = 1.

THEOREM: If f is a Boolean function, then 2_/z F(s)

is an even integer for all s.

Proof: Let _'be the (0, 1) Boolean function correspond-

ing to f. We can always express _"as a modulo 2 sum of

products (for example, see Ref. 72) which can be re-

duced, by factoring x from the terms in which it appears,

to

f'(x) = x, fl (xz, x_, ..., x_) (_ f2 (x2, ..., x,) (407)

Now, F(s) is the transform of (-1) _, or

A A
F(.) = 2-'_= (- 1),,s,+_,+.,,, • .... ..-.

l 1

2 2= 2--/2 ... (- 1) ',_,+ .... '._. ÷f,

• ,=o ,=o (408)

For those s with sl _, the sum in brackets is zero; and

for those with sl = _, the term is 2, both even. Hence,

2_/_ F(s) is a sum of even terms.

In this proof, note that all terms in the sum vanish

except those for which sl = _'1(xz, ..., x,). Suppose that

has kl one's in its truth table; then,

z (Ca' ' " ' ' Ca ) =$1

(409)

is a sum of either k_ or 2" -kl terms, depending on

whether sl is 1 or O.

Corollary: If f_(x2, ..., x,) has an odd number of one's

in its truth table, then F(s)# 0 for all s.

We may combine this with a previous result to obtain

the following.

THEOREM: If f'_(x_ ..., x_) has an odd number of

one's in its truth table, and ff there exists complementa-

lion vector v such that /(x) = f(x _ v) for all x, then
V-_-O.

Proof: An f'l having an odd number of one's implies

that F(s) # 0 for all s. Hence, (s, v) = 0 (modulo 2) must

apply for all s, a requirement which can be met only
when v = 0.

THEOREM: If for some k, _x) = cx_ G _'_(x_, ...,

x__l, xk÷ 1, •.., x,,), then F(s) = 0 whenever sk = i G c.

Proof:

This is zero whenever c + _ = i.

C. Boolean Sequences and the Minimum

Acquisition-Time Receiver

In Part III, we introduced the possibility of increasing

the desirability of a fixed-complexity receiver by cross-

correlating the incoming sequence, call it a, against

several component sequences, call them _,, 6z, ..., _,,
and decoding the vector of maximal correlations (ml, m2,

.... m_) into the phase estimate m of a.

To oplirnize the set of _, we select them to have cross-

correlation periods v_ which are relatively prime in pairs

and each approximately "_/p---_ where p = vt v...., v, is

the period of a. The correlations themselves, R,¢,(m), are
to have maximum distinguishability.
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We have seen in Part V that the separation of auto-

correlation values is always greater than the separation
of cross-correlation values. To make cross-correlations as

mutually distinguishable as possible, then, we would

like them to appear to be as near to autocorrelations as

possible. One may attempt this by defining ct as a com-

bination of the _, hopefully obtaining a highly distin-

guishable set of cross-correlation functions by proper

choice of the combining function. That is, we would like

to be able to combine the _1, _2..... _, in some way to

produce a, choosing this function to maximize the dis-

tinguishability. We are dealing with binary sequences,
and it is thus natural to use Boolean functions to combine

the _. We will assume that, for an arbitrary Boolean

function [,
A

a --I(_i,_ ..... _'.) (411)

where the function is applied termwise, as though a

were the output of a switching network when the inputs

are _1, _z, ..., _. (Fig. 12).
A ,_, P,

a_ = [(_,, _2_..... _i) (412)

INPUT SEQUENCES

(=((,,...,(.)

-- - -- i
A

A

BOOLEAN

FUNCTION
f(x)

OUTPUT SEQUENCE

a=f(_)

A

¢,, _1

Fig. 12. Sequence generation by logical combination

of component sequences

We assume that ct and the _i are binary (_--+-1)sequences

so that [ is a (___1) Boolean function, and the _, _'_, and _"

are defined on (0, 1) accordingly:

or, = (- 1)*,,

&, = (--l)!,, (418)
[ (- 1)I

By using the Kroneeker delta, we can separate the se-

quences from the Boolean function much in the same way

as we separate the sequence from the modulation in
Part II.

a = _'_/(x)8(x,_,) (414)
z-¢

z

The cross-correlation of (x with a sequence/3, defined by

p = _ g(,,) 8(x _,) (415)

can easily be computed by standard means. Since we

assume that the v_ are relatively prime in pairs,

a,_(m) = x) g(y) 8(xk, _k,) 8(yk, _k.,+,,
/¢=1

• • '=I

: Z _ f(x)g(y)l_Ir_,v,(m) (416)

where the (un-normalized) cross-correlations of projec-

tions are defined as in Eq. (12):

Vl,

r,,v,(m) = 8(xk, &,) 8(xk, &,_+,.) (417)
i=1

At this point, we make use of the Boolean transform:

f(_)= ZF(.) ,(.,_)
• (418)

g (,,) = _c(_) _(_, ,,)

Direct substitution into Rob(m) results in the equation

R_a(m) : _ Z Z _ F(,) G(w) ¢(s, x)¢(w, y)1-] r,, vs(m)
:1=1

• • • w

• w

XI2-"_j_r,j,/m)(--1)',','_,', ] (419)

 °0 m/-2Z

[ /1X 2-" I'I r,_ L,/m)(- 1)',',+'_,',
J=l

Ut=o

Let us turn our attention, for the moment, to the term

in brackets above• The r(m) are correlations of projec-
tions _(x_, _'_), and these projections are related as follows:

(0,_',)= 1 - B(1,_) (420)

We can thus reduce all r(m) to terms involving r_(m):

robot(m) = pl -- 2kj + r_(m)
(421)

rojl_(m ) : kj -- rlili(m) : r_o_(m)

where k_ is the number of one's in _"_per cycle.
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On the other hand, R_s(m) also is related to these r(m)
in a simple way:

Pl_j(m) = rosos(m) -- 2 rosl,Cm) + rlslsCm)
(422)

= ps -- 4kj + 4rlsl_(m)

When ss =ws = 1, the term in brackets in Eq. (419) is

thus precisely equal to Rcs(rn); when Ss =_ ws, this term

is (v s - 2ks) = Dj, the imbalance in Ss, and forss = ws = 0,

the bracket term becomes v s.

At this point, let us normalize Rao(m) to C,o(m) and

denote the normalized bracket term to be C(m; s, w); ff

we assume X ° = 1 as a convention, we can write

C(m; s, w) : ,--xl_I[Ds]I',_ -%1 [C,s(m)]',% (428)

The final expression for the normalized cross-correlation

between a and fl is, then,

Co,Ira)= 2-" Ft.)G(w C(m;..w) (Va)
• w

This formula is of fundamental importance in finding

the minimum acquisition-time receiver. Note that, by

using it, one may express the cross-correlation between

any two Boolean functions of the $_ as a sum of trans-

form coeEicients of the two functions weighted by auto-

correlation properties of the _. It is worthwhile to note

that when ss _ ws,

IC(m; s, w)[ <_LsJ (425)

and when both ss _ wj and si _ w.

< DsDiIt(m; ,, w)I __, etc. (4gO)
t_jt)i

From these considerations, when the Ds/v s are suffi-

ciently small, we may often omit the terms with s=/=w

from the correlation equation.

D. Design of the Minimal Acquisition-
Time Receiver

Our original reason for studying Boolean functions was

to determine the best function f(x) to define a.

a = f(l_) (427)

We desire to select [ and the $_, i = 1, 2 ..... n, in such a-

way that the cross-correlations of a with each _i have

maximum distinguishability. By choosing g(x) = ( -1F,,
we can write $t as

,A

_, = g(e,) (42s)

The transform of g is easily computed, for we note that

g(x) = 2_/2 6(x, e_), defining e _ to be the ith unit vector

e i = (0,0, ..., 0, 1, 0, ...,0)
(429)

The transform of g is, then,

G(.) = 2"/_ _(., e') (430)

Consequently, the cross-correlation equation reduces to

n S -e _C,¢,(m) = 2-"/z F(s) H (D,_Ij 51 [C¢s(m)]'s'_
• s:,\ vs /

=--,'fl-7_<,(.>
IL'.',:, ;'

[ (°' Y'q(°-ql
i, ll= 0 S _lli

For any two values m' and m" of m, the difference in

correlation values Co¢_(m) (and specifically, the distin-
guishability) is dependent separately on the autocorrela-

tion of _ and the Boolean function

Co¢,(m,) _ C_(m,.) = 2-.12I _.,,,:_F(s)s,._H (Ds y_l\Ps I J

X [C(,(m')- C(,(m")] (432)

Our course to optimize the acquisition receiver is now

clear; first, each _i is to have minimum out-of-phase

autocorrelation values so that Ce,(rn) has maximum sep-
aration, and second, f is to be chosen such that

(ml',l
ikit=l jl_ii

is maximized--also for each i. Further, we can always

choose the sum to be positive by proper choice of f ; for

suppose the sum were negative. By choosing g'(x)=

(-1) _, ÷*, we correlate a against $_, given by

and have Co$_ (m)= -Co$_(rn), which has the sum in

question positive. By duality, we can thus always com-

plement xi in/(x), ff need be, to make

I. lt =1

If the a received is delayed by m steps, our decoding

scheme is also clear: after having found the delays m,
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giving maximum cross-correlations of a with each of &,

we declare that m is that integer such that, for each i,

m -_-- mi mod v_ (485)

which has a unique solution by the "Chinese" remainder

theorem (Ref. 73) of number theory.

Now, consider the sum to be maximized,

j#_ \ vj /
$,$i:1

One of the terms in the sum is F(e0, but the remainder

have products of (D_/vj) as factors. Denote

D'/v'= max1,,,, D._7/I}

F. -- max { I F(.)[}
s, si=l

(436)

Using the triangle inequality, we can bound the sum of

remaining terms,-call it-F, as follows:

j,,,\vj] -- j,,i vt
s,s_= 1 i,s_ =1

IFl <v. n/°'Y '- j#, \ v' / (437)
i,$t:1

.#e i

U ':° \ v'/ -1

The binomial theorem can be applied to the inequality

to give

I [( 37,. . F(,)H _< F_ 1 + -1
,,s_=I j#i

,_.' (4as)

Note that when D'/v" is small, this upper bound can be

replaced by F_ n(D'/v'):

D'
I Fl _< n F.-_- (439)

We recognize that by using nearly balanced sequences
for the & (which we want to do to optimize distinguish-

ability), it is highly efficient to maximize F(e _) by proper

choice of [(x). In fact, whenever n D'/v" < 1, this is the

course we must follow to ensure the largest possible

F(e _) + F.

The best logical function [(x) is therefore one whose

transform F(s) has F(eq as large as possible, for each i.

In order not to present bias to any component, we may
restrict

F(e') = F(e0 all i = 1, 2 ..... n (440)

and maximize F(e0 by proper choice of f.

E. The Maximality of Majority Logic

We are now in a position to prove that the Boolean

function which minimizes acquisition time is the majority
function.

THEOREM: Let _'(x) be the (0, 1) Boolean function of

n binary ( 0, 1 ) variables associated with a ( __+1 ) Boolean

function f(x) chosen such that, among the transform values

F(s), F(e i) = F(e0 for all i, and F(e :) is maximum over

all such Boolean functions. Then, if n is odd, ['(x) = 1 if,

and only if, x = (xt, xz ..... x,) has a majority of its vari-

ables equal to 1 and is unique; ff n is even, [ is not
unique, but necessarily [(x) = 1 whenever x has a str/ct

majority of one's; and _'(x)= 0 when x has a str/ct

majority of zero's.

A

Proof: Define SEk, = {x = (x_, ..., x,) : [(x) = 1,

x_ = 1), and _k0 = {x : /(x) = 1, xk = 0).Then, SE_
U _0 = _t is the set of all x on which [ takes the

value 1. Let I SEt [ denote the number of elements in _E_.

Similarly, let _ = {x: ['(x) = 0, x_ = 1), 040 = SE_,

and 04ko = 040 - 04k_.

F(e') = 2 -"/.' S /(x) (- 1)',

= [ISE,tl-I SE,ot+ I
(441)

Let 8_t(x) be the characteristic function of SEkt:

t10 if x is in SEk_8k_(x) = otherwise

(442)

P X P Xand similarly, _o(x) for SEko, _( ) for04_, and 8_o( )for

_0. Since all F(e _) are equal,
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F(e_)=l_F(e _)

,=* (443)
n

1 8;,(x) s,0(x) - ai,(x)]= -_ 2 2 [8,,(x) + -
i=1 •

But Z 8_x(x) is the number of different _** to which x

belongs; when x belongs to 3E_x, this sum is the number
of times xt = 1, i.e., the number of one's in x, which we

denote by [[ x II.Ifx isnotinx,, th_sumis,ofco_e,
zero. Similar results also apply to the other summands.

1 1"*(*'=; 2 il*,
• i=1 • ia _ I

Similarly, for _1o,

(444)

I 2 <- il*lJ)
• i=l zln_

1

Incerting these into the expresNon for F(eX),

F(e_) = 2-"/2 n •
1

(445)

(440)

÷Z I,.,,1t
ztn'_ 0

In order to maximize F(el), it is necessary to include in

_ every x such that

IIx II> "-
2

and exclude from ._'_ all elements x such that

(447)

IIx II< _ <448)
2

Hence, _" takes on the value 0 or 1, depending on

whether the sCr/ct majority, of its variables are 0 or 1.
When n is odd, this makes _'unique. For even n, those x

with llxll = ./9 may be either excluded or included in
_ without changing F(eq.

To calculate F(e'), merely evaluate I_,1, I_ol, 1o44,
and I_txl: Denote by [h] the integer part of h. Then,

l°4_1--I_*I -;- . 1
I_--0 fl_=0

(449)

m--o ¢P.=O

As a result, the maximum value of F(e') is

Ci)F(e') = 2 _-"/_ n (4,5o)

F. Cakulation of Majority-Logic Transform

Let n be odd, and let f be the unique majority logic of

the previous Section. We need consider only odd n, be-

cause if n were even,

24/' F"(e_) - 1

We could thus increase n by one, not degrading the

correlation nor decreasing the correlation _ne, but to

decrease the ratio Zm/#v,.

We wish to calculate the transform of f(x). Because f is

a symmetric function, if s has k one's (i.e., II• II= k),then

for some permutation T,

F(.) = F(-n') = F(u_) (451)

and by this symmetry of f, we need to calculate only these

F(._).

F(n_) = _-'/' S _ ( - 1)', ÷''''. f(_)
/...4

E
=, II ,l/z

( -1)',÷.... ,,

• ,II'II >./2

(452)

Define the two sums above as

A(k) --'-- =, I I _l < ,,/,( -I)'*+'"+"

B(k) = •,II_• -/,( - 1)"+...."

(458)

Suppose that a vector x has i one's in it, iof which lie

in x, ..... x_, and i --i in x_.,, . .., x,. There are (_) (i-,)"-_
such vectors x, and thus,
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(n-I)12 mln(k,¢)

t=o j=O

2 2 ,_, I- l,
_=0 1=0

By similar reasoning,

(454)

1_=n+1/2 =

Let ,._(t) be the generatSng function:

(=o ]=o

j=o ,=o (4,50)

]=0 m=0

= _1-_' (z + t)_

Note that the sm_, oi _= coefficients of t°, tt .... , t ("-1)/2

is precisely A(k)T-tha_ is,

A(k) = coef. of t ('-a)/2

in (1 - t) _ (1 + t) "-_ (1 + t + ... + t ("-'/2)

= coef. of t _"-'/2 in (1 - t) _'1 (1 + t) "-_ (1 - t c"÷_'/*)

= coef. of t _"-_/2 in (1 -- t) _-_ (1 + t) "-_ (457)

= coef. of t"-_ in (1 - t_ -t (1 + t_)_

= coef. of t-_ in (1 -- t2) _-_ (1 4- t2)"-_
P

By this procedure, we reduce A(k) to the residue of a

rational function, to be calculated by the Cauchy residue

theorem ( Ref. 74) :

1 _ (1 - t2/_-_(1 + t2) "-_
A(k) = --_ y t" dt (458)

q= v :i)

integrating along any simple closed path containing the

origin.

= 1 1_ (1+ (459)

Choose the integration path to be unit circle, t = e_'.

f:"A(k) - 2"-' (- iP-' sin "-z z cos _' z dz (460)
11"

Because A(k) must be real, we may limit our attention

to the real part of the equation (i.e., to odd k). This inte-

gral is one which can be reduced by a standard table of

integrals (see Bef. 75, for example) to

(461)

By a similar procedure, or by invoking symmetry of

the majority function, we compute

B(k) = -A(k) (462)

The final result for F(s) is, then,

l (k-l)I /_"_)[ n-(n__2k) }

(463)

which, for k = 1, gives the result obtained previously

for F(el):

/ \n-1

F(e_) = 2'-'/_ [n-Xl (464)

VT/

As a function of odd k, IF(u_)l is decreasing for k <

(n- 1)/2 and increasing for k > (n - 1)/2, as shown by

(k-l) t (-_) ! n-k

F(u _')

×

n-k-1
(465)

A certain symmetry is also present in the fact that [ F(u _) I

= IF(u'-_qI.

G. Optimizing the Value of n

Now, let us go back and compute the coefficients of

C¢_(m) in C._(m) more closely; this coefficient is F(e i) 4- F,
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where

j,,,\ vj /
limB( : 1

n,t_el

Again, by the triangle inequality and symmetry,

(_)

s, $1:1

'_'_ (467)
n-1 (O'_ _'-a

<_ (k_l)lF<u"'l\"_'j
k=$

The first term in the bound is

( ) (D')' 3 F(e')I (n-l, (n-2)(D'_'n_l iF(e2) I -P'- --_1 (n-4) \o'/

(468)

The next terms involve quantities (D'/v') _-x with k >_ 5,

which we can safely omit. Hence, ff

7 < < _ < (n - 1) (n - 2)

we may assume that the coeffcient of Cei(m ) in C,_t(m)

is merely 2 -"/z F(e_).

Into the expression for T'/T in Part III, we insert the

distinguishability for the cross-correlations C,_,(m) and

the distinguishability of C,. ff a' is an optimal sequence.

Whenever the vi are much larger than unity, both tLC,_,

and aC a. are approximately one. Hence,

T' r n- 1 _2

The acquisition ratio to be minimized is, then, given

approximately by

T_c,(n),... n-1 1 -_
n _1-')/" 2_-_ n-I (471)

For any given p, there is some n which minimizes this
ratio. As an indication of the behavior, we approximate

the binomial coefficient using Starling's formula (Rd. 76).

k t __ (2_) _/' _+_/2 e-_ (472)

When this is done,

(_,1.) r ,l,i, -I -l/',
"-' : / (473)

reducing the approximate acquisition ratio to

TLq - (.Yff-_n (n - l) p 11" (474)
rgeq

To find the optimum value of n, take the derivative of
#T,oJT,+q.

' Td(T,oJ .o<t)
dtl,

" ('""]r2,,,-

which is zero only when the term in brackets is zero.
This occurs at values of n such that

(2n- 1)n
lnp = n-1

exp n(2n- -- i 1) (476)

1
vi _._ "Vr-P = e2 exp n + 1

Upon insertion of this value into the acquisition ratio, we

find the optimal ratio:

n(el4) [(21@]"

__ _n(n -- 1) exp ( --2n + 1)

(477)

This ratio is tabulated in Table 7. Note that the ratio is

less than unity, and hence, the minimal acquisition-time

receiver is better than matched filters.

Table 7. Optimal acquisition ratio and periods for

given n single correlator case

r'acq
n P

Ts_q

1

3

5

7

9

II

13

15

17

19

any

1.8 × !0=

7.6)< 10 4

3.8 )< I0'

i.o)< Io'
1.0 )< 10 _'

,_.7 X I 0_1

3.1 )< 10 =

1.6 )< I0 _

9.1 )< I0"

i.O

6.3

3.9

1.5

4.7

1.3

3.4

8.4

2.0

4.6

)< 10*

)< I0 -i

)< 10 -8

)< 10 "_

X 10 4

X I0 -T

)< I0-'

)< I0 "u

X 10 -_

X 10 -sl
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Hence, the minimal acquisition-time receiver would,

ideally, given an a-period p, combine n optimal binary

sequences with

p __ exp n(2n - 1) (478)
n-1

using component sequences _ of periods vi relatively

prime in pairs and near to v_ _" 9.

H. Modified Component.Correlator Receivers

Suppose, as a third alternative, we are willing to make
a receiver which has one correlator for each of the com-

ponents $i of a. What is the best receiver? Just as in the

constant-equipment case, we define an acquisition ratio:

T',cq _ time for n-component acquisition

T,cq time for 1-component acquisition
(479)

The time for a 1-component code a to be acquired is

merely its period p times the integration time T per

phase, or pT. On the other hand, _vith n correlators work-

ing simultane____time to acquire is the new

integration time per step T' times the number of phases,

or max {v_} T',

T_o._ max {v,} T' (480)

r,o, r

To minimize this ratio, we may argue as before: the

vi must be relatively prime, for if they were not, we

could pick a relatively prime set with the same least

common multiple but having smaller maximum compo-

nent. Next, to further minimize the ratio, we want to

make (vt)_, as close to the average v_ as possible:

_J_vt_ _..__v,+ ... +v. (481)
n

The best acquisition ratio is thus given by

T'._, _ vl + ... + o,T'

T_q no,v2 ... o, T
(4S9.)

equation is. exactly the same form as that for the minimum-

equipment receiver described previously, except for a
factor of 1/n. The same technique for obtaining a from

the components _i (which must be optimum binary

sequence) must be applied in both cases; that is,
a = maj(_). Further.

v, = V'ff (4Ss)

With a majority logic, optimum components, and
v_ _ "V_, the acquisition ratio is approximately 1/n times

that found in Section E.

_r_cq_ p_l+l/.F___l+,/n - 1_1-2•,o,- L (484)

Upon setting the derivative of this ratio to zero, we find

n 2

p= expwn--1

n

v__ eXPn _ 1

(485)

_. _r(n -- 1) e-"
--2

The optimal acquisition ratio is tabulated in Table 8.

However, ff each v_ were about 3('_e) in length, the

analysis above, based upon the assumptions that the
D_/v_ are small and n is large, may not be strictly valid,

because the relative prime condition on {vl} may carry

(v_),_, far from e. But the analysis is indicative of the

action to be taken in the design of such a receiver: after

an approximate choice of p, select n such that

Table 8. Optimal acquisition ratio and periods for

given n,n-correlator case

r_cq
n p

Taoq

I

3

S

7

9

I1

13

15

17

19

any

9.0X 10

5.2 X 10 _

3.5 X 10 a

2.5 X 10 4

I.SX IOs

1.3 X i0'

9.5 X 10 j

7.0 X 10'

5.1 X IO s

1.0 X 10 o

i.6 X 10-'

4.2 X 10-'

8.6 X I0 -I

1.6 X I0 -_

2.6 X 10 -4

4.3 X 10 4

6.7 X 10 -I

1.0 X 10 _

1.6 X 10-'
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P = exPn - 1 (486)

Having this n, choose n relatively prime optimal compo-

nents _ whose periods are as smaU (but greater than one)

as possible. Then, modify the choice of p to

p = v_ v, ... v, (487)

The approximations certainly establish a lower bound

on the acquisition ratio, in any case, since optimal condi-
tions were assumed at all times.
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APPENDIX

Minimax Sequences

This Appendix lists the known optimal and minimax

sequences up to length 63 and their corresponding cor-
relation functions. In the Tables, "+" stands for + 1 and

"-" stands for -1. The number at the top is the period,

and both the sequence a,, and its correlation function

Ro(m) are listed, starting with m = 1:

P

sgn a, R,(1)

sgn _t, Ro(2)

o •

sgn _ R,(p)

Only the best sequence found for each specified period

is given, as is the method used to find it. There is a mini-

max sequence listed for every period from 3 to 63, except

for p = 40, 48, 52, and 56, all of which are divisible by 4.

Note that in some cases (e.g., p = 13), more than one

type of optimal sequence exists.

In the Tables, s refers to the 2_th loss function about

r(m) = -2 which was first used to find the sequence, D to

the absolute value of the imbalance, and N to the number

of out-of-phase maxima. All sequences are minimal loss
for each of the criteria s = 1, 2, and 4, and maximum

correlation of Part VI.

P

3

4

5

6

7

$

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

RH R.I,-'_ m P'I_ _ No. of
.... levels

--! --I 1 0 2

0 --4 0 2 3

1 --3 1 2 3

2 --2 0 I 3

--! --1 1 0 2

0 --4 0 5 3

1 --3 1 4 3

2 --2 0 4 3

--1 --1 1 0 2

0 --4 0 8 3

1 --3 1 6 3

2 --2 2 4 3

--1 --1 1 0 2

0 --4 0 11 3

1 --3 1 6 3

2 --2 0 4 3

--1 --1 1 0 2

0 --4 0 14 3

1 --3 ! 10 3

2 --2 0 5 3

--I --I 1 0 2

0 --4 4 21 3

l --3 1 12 3

2 --2 0 6 3

3 --5 1 2 4

0 --4 2 21 3

1 --3 1 14 3

2 --2 2 8 3

--I --1 1 0 2

0 --8 0 24 4

I --3 3 18 3

Table A-1. Summary of minimax sequences

Generation p RJt Rn,*n D N NO. of
method levels

linear shift register (opt) 34 2 --6 0 10 4

2 Q 2(opt) 35 --1 --1 i 0 2

quadratic residue (opt) 36 0 --4 4 27 3

3 ® 2 (opt) 37 1 --3 1 18 3

linear shift rag ister (opt) 38 2 --6 0 11 4

S = I (opt) 39 3 --5 3 6 4

s _-- I (opt) 40

s _ I (opt) 41 I --3 1 20 3

quadratic residue (opt) 42 2 --6 0 14 4

s ----- 1 (opt) 43 -- I --1 1 0 2

s ---- 1 (opt) 44 0 --4 2 33 3

s ---- 1 (opt) 45 I --7 1 24 4

linear shift register (opt) 46 2 --6 2 18 4

s ---- 1 (opt} 47 --I --1 I 0 2

s ---- 1 (opt) 48

s -'- 1 (opt} 49 1 --7 I 36 3

quadratic residue (opt) 50 2 --6 2 16 4

s --'-- 1 (opt) 51 3 --5 3 12 4

s = 1 (opt) 52

s ---- ! (opt) 53 1 --3 I 26 3

quadratic residue (opt) 54 2 --6 4 21 4

s = I (opt?)
55 3 --5 5 10 4

• = I (opt)
56

• ---- I (opt)

• ---- ! (opt) 57 I --19 I 36 4

4 " 7 (opl?) 58 2 --6 0 20 4

quadratic residue (opt) 59 -- 1 -- 1 I 0 2

s ---- 4 (opt?) 60 0 --4 2 45 3

linear shift register (opt) 61 ! --3 1 30 3

s _ 1 (opt?) 62 2 --6 0 25 4

S _- 2 (opt?) 63 -- 1 -- 1 I 0 2

Generation

method

s-_4

Jacobl (opt)

backtrack (opt?)

s ---- I (opt)

s--_4

s_2

quadratic residue (opt)

s_---4

quadratic residue (opt)

1 I " dl (opt'P)

s-----4

s----2

quadratic residue (opt)

7Q7

s--_4

s----2

quadratic residue (opt)

s_2

Jacobi (opt?)

1903

s_4

quadratic residue (opt)

15 * 4 (opt?}

quadratic residue (opt)

s-----4

linear shift register (opt)
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Ne. of
p Sgn Gt ila(/1 D N

levels

3 1 0 2

4" --I

-- 3

4 0 2 3

-_- 0

m 4

-- 0

+ 4

5 1

+ 1

-- --3

+ s
6

4- --1

-- --2

-- 2

+ --2

-- --2

+ 6
7

+ --1

-- --1

+ --1

-- --|

+ --1

+ 7

10

-- 0

-- 0

-- --4

+ o
-- --4

+ o
+ o
4- s

+

+
+
+
+

+

!

1

--3

--3

--3

--3

I

1

9

1

--2

--2

--2

--2

--2

2 3

0 1 3

1 0 2

1 0 3

! 4 3

1 4 3

Table A-2. Tabulated minimax sequences

Generation p Sgn ctt Ila(/) D N No, of
method levels

linear shift register (opt) 10 1 4 3

2 • 2 (opt)

quadratic residue (opt)

30 21o_

linear shift register (opt)

s = 1 (opt)

s = I (opt)

s = I (opt)

I1

4- --2

-I- --2

+ 2
+ 10

+

+

+
+
+

12

+

+

+
-4-
+
+

13

+

+

+
+
+
+
+

14

+
+

+
+

+

+

--I

--1

--1

--1

--1

--1

--1

--I

--!

-1

11

0

0

0

--4

0

--4

0

--4

0

0

0

12

!

I

I

--3

--3

--3

--3

--3

-3

1

I

!

13

--2

2

--2

--2

2

--2

--2

--2

2

-2

I 0 2

0 | 3

! 6 3

2 4 3

Generation

method

s = I (opt)

s=l

quadratic residue (opt}

s = 1 (opt)

s=l

not quadratic residue

sequence (opt)

s=l

exhaustive search

showed no baianced

3.level sequence (opt)
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p sgn a_

14

+

+

15

+

+

+

+

+

+

+

+

16

+

+

+

+

+

+

+

+

17

+

+

+

+

+

+

+

+

+

He. ef

Rain D N
levels

2 4 3

--2

2

--2

14

1 0 2

--I

--I

--I

--1

--1

--1

--1

--1

--1

--I

--I

--1

--!

--1

15

0 11 3

-
0

0

--4

0

0

--4

0

--4

0

0

--4

0

0

0

16

I 8 3

--3

l

I

I

-3

--3

1

--I

--I

1

--3

--3

l

I

I

--3

17

Table A-2 (cont'd|

Generation

method

linear sequence (opt)

s = 1 (opt)

s=l

not quadratic

residue (opt)

p Sgn G_

18

+

+

+

+

+

+

+

+

+

19

+

+

+

+

+

+

+

+

+

20

+

+

+

+

+

+

+

No. of
Ja|i) D N

levels

0 4 3

2

--2

--2

--2

--2

--2

2

--2

--2

--2

2

--2

--2

--2

--2

--2

2

18

1 0 2

--1

--1

--1

--1

--1

--1

--1

--!

--I

--1

--I

--I

--!

--I

--I

--1

--I

--1

19

1 0 2

0

0

0

0

--4

0

0

--4

0

--4

0

--4

0

0

--4

0

Generation

method

s = 1 (opt)

s=1

quadratic residue (opt)

• = 1 (opt)
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No.of
p Sgn o.i /a(I) D N

levels

20 1 0 2

+ 0

+ 0

-- 0

÷ 20

21 1 10 3

-- 1

-- I

+ --3

+ 1

-- --3

+ 1

- 1

- 1

+ 1

-- --3

+ 1

-- --3

-F- --3

-I- --3

-- 1

--3

21

22 0 ;5 3

-- --2

-- 2

-- --2

_2

-- --2

+ --2

+ --2

-- 2

+ --2

-- _2

-- 2

+ --2

+ 2

+ --2

+ --2

+ --2

--2

+ 2

+ -2

+ 22

23 1 0 2

-t- --1

Table A-2 (cont'd)

Generation

method
p Sgn (1i Rail) D

s = ! (opt) 23

s -- 1 (opt)

24

• = 1 (opt)

25

s=2

quadratic residue (opt)

No. of
N

levels

1 0 2

-I- --1

-t- --I

+ --1

4- --1

-I- --!

-t- --I

-_- --I

-I- --1

-- --1

4- --1

-- --I

-Jr 23

4 21 3

-- 0

-- 0

+ 0

-- 0

-- 0

-- 0

+ 0

+ 0

+ 0

-I- --4

-- 0

+ 0

+ 0

-t- --4

+ 0

+ 0

-- 0

-- 0

+ 0

-- 0

+ 0

-- 0

+ 0

-t- 24

1 12 3

-I- 1

+ 1

-- 1

-- --3

_3

Generation

method

s=2

s -----1 (opt?)

• = 1 (opt)
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No.of
p Sgn o.i Rail) D N

levels

25 I 12 3

+ I

-- 1

@ --3

-- 1

-- --3

-I- --3

-- I

-- 1

+ --3

+ !

-t- 1

--3

-t- --3

-- !

+ i

-- 1

-- --3

-t- --3

+ 25

26 0 6 3

-- --2_._ __

-- 2

-- 2

-t- --2

-t- --2

-- 2

+ --2

-- --2

-- --2

-I- --2

-- --2

-t- --2

-- --2

-I- --2

-t- --2

+ 2

-- --2

+ 2

-t- 2

-- --2

-- --2

--2

-t- 26

27 1 4 4

-- --I

-I- --I

-- 3

-- --I

-I- --1

-- --5

Table A-2 (cant'd)

Generation

method

s -----1 (opt)

s = 1 (opt)

s -----1 (opl)

p Sgn G i

27

+

+

+

+

+

+

+

+

+

+

+

28

+

+

+

+

+

+

+

+

÷

+

+

+

+

+

+

29

÷

No. of
Ra(/) D N

levels

I 4 4

--!

--i

--I

--I

--1

--1

--I

--1

--1

--!

--I

--!

--1

--1

--5

--1

--1

3

--!

--1

27

2 21 3

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

28

I 14 3

--3

I

Generation

method

s ---- I (opt)

4 " 7 sequence (opl?)

s ---- 4 (opt)

not quadratic residue

sequence
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No.of
p Sgn G¢ Rail) D N

levels

29 1 14 3

3O

-- --3

+ 1

+ t

- 1

-I.- -.1

+ t

-.t- -3

-]-- -3

- l

-.}- -3

Jr -3

- 1

+ 1

-- --3

+ --3

-- 1

+ --3

-- --3

-- 1

-- --3

+ 1

+ I

+ 1

-- --3

-- 1

-- _3

-- 29

+

+

+

+

+

+

+

+

+

+

+

+

+

-I-

+

--2

--2

--2

--2

-2

--2

2

--2

2

2

2

--2

-2

-2

-2

--2

--2

--2

2

2

2

--2

2

-2

-2

--2

--2

2 O 3

Table A-2 (cont'd)

Generation

method

s = 4 (opt)

s = 4 (opt?)

p Sgn Gi

30

+

31

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

32

+

+

+

+

+

+

+

+

+

+

Iotl)

--2

--2

3O

--I

--1

--1

--!

--1

--I

--I

--I

--!

--I

--1

--I

--1

--1

--I

--1

--I

--!

--1

--1

--1

--I

--I

--1

-I

--I

--I

--I

--1

--I

31

--4

0

0

--4

0

0

0

--4

0

0

0

0

0

0

0

--8

0

0

0

No. of
D N

levels

2 8 3

1 0 2

0 24 4

Generation

method

s -----4 (opt?)

lineor sequence (opt)

s = i (opt?)

70



/PL TECHNICAL. REPORT NO. 32-388

p Sgn(Z i Itali) I D N

32 0 24

33

34

+ 0

+ 0

-- 0

+ 0

m --4

-- 0

+ 0

+ 0

-- --4

-- 0

-- 0

-I- --4

-- 32

m

+

t-

+

+

+

+

+

÷

+

+

+

+

+

m

+

+

+

+

+

+

+

+

+

3 18

--3

--3

1

1

--3

I

I

--3-[ __

--3

--3

1

--3

I

1

I

1

--3

!

--3

--3

1

I

--3

I

1

--3

1

!

--3

--3

33

0 10

Table A-2 (cont'd)

No. of Genee_ien J Ne. oflevels mefl_d p Sgn (zt Itsl/) D N levels

4 , = 1 (opt?) 34 0 I0 J 4

3

4

--6

--2

--2

2

--2 i

--2

--2

--2

m = 2 (op*_l

s=!

35

+ --2

-- 2

-t- --2

-- 2

+ --2

-- 2

+ --2

-- 2

+ --2

-- 2

-- --2

+ 2

+ 2

+ --2

+ --2

+ 2

-- --2

+ --6

-t- 34

1 0

-t- --I

-I- --!

"4- --i

+ --I

÷ --I

-'J- --I

"t- --I

+ ' --1

+ i --I

-- i --1

-- ! --1
i

+ I -1
!

-- j --I
i

- i -1
I

-- i --1

-- ! --1

+ --1

-- --1

+ i -1
- i -1

+ I -1

-t- I -1

3

s=l

twin-prime sequence (opt)

71



JPL TECHNICAL REPORT NO. 32-388

No. of
p Sgn a i Ra(I) D N

levels

35 I 0 3

36

37

-- --I

-I- --1

-- --|

-f- --!

-- 35

E

B

+
+
+

+

+

+
+

+
+

+

+

+
+

+
+
+

+

B

+

+

0

0

0

0

0

0

0

0

--4

--4

0

--4

0

0

--4

0

0

0

0

0

--4

0

0

--4

0

--4

--4

0

0

0

0

0

0

0

0

36

--3

1

--3

--3

!

--3

1

--3

27

18

3

3

Table A-2 (cant'd)

Generation

method

Iwin-prime sequence (opt',

s = 2 (opt?)

found by backtrack

s _- 2 (opt)

not quadratic residue

sequence

P

37

_n (_

+

+
+

+
+
+

+

+
+
+

+
+

+

+
+
+
+

38

+

+
+
+
+

+

+
+

+
+
+

+

lEa(I)

1

1

-3

1

1

1

--3

--3

--3

1

1

--3

-3

--3

1

1

1

--3

1

1

--3

1

-3

I

--3

--3

1

--3

37

--2

--2

--6

--2

2

--2

--2

2

--2

--2

2

-2

-2

2

--2

--2

2

--2

2

--2

2

--2

--2

2

--2

No. of
D N

levels

I 18 3

i0 11 4 s=l

Generation

method

s ---- 2 (opt)
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p

38

39

Sgn (zi

m

m

+

+

+

+

+

+

+

m

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

R,(|)

--2

2
--2

--2

2

--2
--2

2

--2

D N

0 11

--6
--2

--2

38

3 6

--1
--1

--!

--I

--5
--1

3-- -

--1

--.5
--I

--I

3

--!
--1

--1
--!

--1

--!
--1

--I

--1

--1

3

--!

--1

--5
--1

3

3

--1
--1
--5
--1
--1
--1

--I
39

No. of

levels

Table A-2 (cont'd)

Generation

method

s----I

s_4

p Sgn(1{

41
+
+

+

+
+

+
+
+

+

+

+
+

+

+

+
+

+

+
+

+
+

42

+

+

+

+
+

Re(J)

1

!

1

--3

1

1

--3

--3

1

1

1

--3

--3

--3

--3

--3

I

--3

I

--3

1

I

--3

1

--3

I

--3

--3

--3

--3

--3

1

!

!

--3

--3

1

1

--3

1

1

41

2

2

2

2

--2

--2

--2

--2

2

--2

--2

2

2

No. of GenerationN
levels method

20 3 quadratic residue
sequence(opt)

0 14 4 s--4
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Table A-2 (cont'd)

Generation

meCkod

43

44

quadratic residue (apt)

Sgn G_

÷

+

÷

÷

+

+

+

+

+

+

+

+

÷

+

+

÷

÷

+

÷

+

-F

+

+

+

lZall)

--1

--1

--1

--1

--!

--1

--I

--I

--!

--1

--1

--1

--i

--7

--1

--I

--1

43

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

--4

0

0

0

No. of
D N

levels

0 0 2

2 33 3

Generation

method

quadratic residue (opt)

11 " 4 sequence (opt?)
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p

44

45

Sgn a i Rail} D N

2 33

÷ --4

+ 0

+ 0

+ 0

÷ --4

-- 0

-- 0

+ 0

+ 44

I 24

-- I

÷ --3

+ t

-- --3

-- I

-- --3

+ t

+ 1

+ --3

-I- --3

-- --3

_ --_j --

-- j,_ _

+ !

+ 1

- I

- 1

+ !

-- --3

-- --7

+ i

- I

-I- -7

-I- -3

- 1

+ i

- i

•1. 1

- i

- i

-- --3

+ --3

-- --3

-- --3

-- --3

+ I

+ t

-- --3

•1. i

+ --3

•1. I

+ --3

+ I

-t- 45

No. of

levels

Table A-2 (cant'd)

Generation

method

11 " 4 sequence (opt?)

s----4

P

46

Sgn G_

+

"1"

+

+

+

+

+

+

+

+

+

+

"1"

+

+

+

"t-

+

+

+

+

+

47

"1"

+

+

"1"

"1"

+

la(I)

2

2

2

--2

2

--2

--2

2

2

--2

--6

--2

--2

--2

2

--2

2

--6

--6

--2

2

--2

--2

--2

2

--2

--6

--6

2

--2

2

--2

--2

--2

--6

--2

2

2

--2

--2

2

--2

2

2

2

46

--I

--1

--I

--I

--1

--1

--1

--I

No. of Generation
D N

levels method

2 18 4 s_l

1 0 2 quadratic residue

sequence (opt)
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p Sgna_ Rnli)

47

-- --1

-- --I

-- --1

-- --1

4- --I
-'t- --!
-t- --1
-- --1

-t- --I

--!
-t- --I

-I- --1

-- --1

-t- --I
-- --!

-- --1

-t- --1
-- --1

-- --1

-- 47

,49

+ t
-t- --7

+ 1
-- --7

-- I
-t- --7

+ 1

+ 1

-t- 1

I
-- !

-I- I
-- --7

-f- 1

No. of

D N
levels

! 0 2

I 36 3

Table A-2 (cant'd)

Generation
method

quadratic residue
sequence(opt)

707

Note that the twoout-

of-phaselevelsare not

odiacent(separation 8)

p Sgn a t

49
+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

50

+

+
+

+

+

+

+

+

Rail) D

1

I

1

|

1

1

--7

I

I

I

I

1

1

--7

1

1

1

1

1

1

--7

i

I

!

1

1

1

--7

--7

1

--7

I

--7

!

49

--2
2

--2

2

2
--2

--2
--2

--2

--2
2
2

--2

--6

--2

2
--2

2
--2

N

36

2 16

No. of
levels

3

Generation
method

707

s=4
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p

50

51

÷

÷

+

+

+

.1.

+

.1.

.1.

+

.1.

.1.

+

+

m

+

.1.

.1.

.1.

+

.1.

.1.

+

+

+

+

.1.

Ra(i) O N

2 16

m2

2

--2

--2

--2

--6

--2

--2

--2

2

--2

--2

2

--2

2

--2

--6

--2

2

2

--2

--2- --

Bin-- _lB mwm,,-

-2__

-2

2

2

-2

2

--2

5O

3 12

3

--1

3

--1

-!

--1

-I

-!

--I

--5

--1

--5

m S

--1

--1

--5

3

--1

3

--1

--5

--1

--1

3

No. of

levels

Table A-2 (cant'd)

Generation

method

,,-----4

s=2

p ._In a i Rail} O

51 3

-- 3

-- 3

-- 3

-- --1

•1. --I

•1. --5

•1" --I

-- 3

4- --1

+ 3

-- --5

•1" --I

•1. --5

-- q5

-- --j

-- --5

•1. --1

•1. --I

,_- --1

•1. --I

+ 3

•1. --I

-- 3

•1" 51

53 1

+ |

-4- --3

-- !

-t- --3

-- I

+ |

+ --3

-- I

+ |

+ |

4- --3

-- 1

•1" --3

-- 1

+ !

+ |

4- --3

-- --3

-- --3

-- --3

-- --3

-- --3

-- I

+ |

-t- --3

No. of Generation
N

levels method

12 4 s=2

26 3 quadratic residue

sequence (opl)

"7"7
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No. of
p Sgn a t la(I) D N levels

53 1 26 3

54

-- --3

-- i

+ 1

-t- --3

-- --3

-- --3

-- --3

-- --3

-- --3

-- 1

+ 1

+ 1

-_- -3

- 1

-t- -3

- !

+ t

+ 1

-]- -3

- i

+ 1

+ -3

- I

+ -3

-- --3

-- I

+

+

+

÷

+

+

+

+

+

+

2

2

--2

--2

2

2

2

2

2

--2

2

--2

--2

--10

--2

--10

2

2

--2

--2

2

--2

--6

--2

--2

--2

0 23

Table A-2 (cont'd)

Generation

me_kod

quadratic residue

sequence (opt)

s----2

p Sgn (1 i

54

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

55

+

+

+

+

+

+

+

+

+

+

+

+

+

+

la(I)

2

--2

--2

--2

--6

--2

2

--2

--2

2

2

--10

--2

--10

--2

--2

2

--2

2

2

2

2

2

--2

--2

2

2

54

--1

--1

--1

--1

3

--!

--!

--I

--1

3

-5

--1

--1

3

--I

--1

--I

--1

3

--!

--5

--1

--I

3

--I

No. of
D N

levels

0 23 5

5 10 4

Generation

method

s--'--2

Jacobi sequence (opt?)
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p

55

57

No. of
Sgn (1i Rail) D N

levels

5 10 4

-t- --1

-- --1

÷ --1

-- 3

-- --1

-I- --I

-I- --5

-t- --I

+ 3

-- --t

+ --t

-- --t

-- --t

-- 3

-- --t

-- --t

-- --t

+ --5

+ 3

-- --t

-- --_ Elm_. j _llLmm_

-t- 3_

-- --1

-- --|

+ --1

-- --1

-- 55

1 36 4

+ I

--19

-- --3

+ t

+ t

- --3

- I

-- 1

-- 1

-- 1

-t- -3

-I- 1

+ 1

-- --3

-I- ]

-t- 1

-- --3

-I- 1

+ ]

-- --3

+ i

+ !

-- --3

-- 1

Table A-2 (cant'd)

Generation

method

Jacobl sequence (opt?)

19 • 3 sequence

Note non-adjacent levels

P

57

58

_n a i

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

No. of Generation
Rail) D N

levels method

1 36 4 19 • 3 sequence

1 Note non-adiocen! levels

--3

I

I

--3

t

I

--3

I

I

--3

I

I

-3

I

I

--3

I

I

--3

I

I

--3

I

I

--3

I

I

--3

--19

I

57

--2

2

--2

--2

--2

2

--2

--2

2

2

--2

2

2

--6

--2

--6

--2

--6

2

--2

2

--2

0 20 4 • _ 4
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No. of

levels

Table A-2 (cant'd)

Generation

method

s=4

quadratic residue (opt)

p Sgna_ /all) D N No. of
levels

59 1 0 2
-- --|

--1
-t- --1
÷ --1
÷ --1

-- --1

-- --1

+ --I
-}- --I
-t- --!
-t- --1

--1

-- --1
-- --1
-- --1

--1
-t- --1
-- --i

-t- --!
-- --|

-t- --1
-t- --I

-t- --1

-t- --1

-I- --!
-- --1

-- --1
-- --1

-I- --1

-- 59

60 2 45 3

-- 0

-- 0

-- 0
-- --4

+ o

+ o

+ 0

-t- -4

+ o

- o
4t- o

-- --4

-- 0

Generation
method

quadratic residue(opt)

15 * 4 sequence(opt?}
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P

60

61

Sgn a._ Ra(I) D N

2 45

-- 0

-t- 0

-- 0

-- 0

+ 0

-- --4

-t- 0

+ 0

- 0

-- --4

-- 0

-t- 0

+ 0

+ --4

-- 0

+ 0

-- 0

-t- --4

-- 0

+ 0

+ 0- --

-- .--..-jim !aLto-- .t m_.*_

-I- O-

- 0

-t- 0

-I- -4

+ 0

+ 0

-- 0

--I- --4

+ 0

- 0

- 0

-I- --4

+ 0

+ 0

-t- 0

-- --4

- 0

-t- 0

-- 0

-- --4

÷ 0

-- 0

- 0

- 60

1 30

+ ]

-t- -3

- i

-{- 1

-t- I

+ --3

-- --3

No. of

levels

Table A-2 Icont'd)

Generation

method

15 " 4 sequence (opt?)

quadralic residue

sequence {opl)

P

61

No. of Generation
Sgn a_ Ra(ii D N

levels method

D

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

÷

+

+

+

+

+

+

+

+

+

I

-3

1

-3

-3

I

1

1

1

1

--3

--3

1

i

--3

1

--3

--3

1

--3

!

--3

-3

-3

-3

--3

--3

1

--3

1

--3

--3

1

--3

!

i

--3

--3

1

1

I

1

i

--3

--3

!

--3

--3

--3

I

1

I

--3

1

61

30 3 quadrcllic residue

sequence (opt)
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No.ofp Sgna i Rali| D N
levels

62 0 25 4

-- --2

--6

-- --2

-- --2

-- 2

-I- --2

-- 2

-- 2

-- --2

-- 2

-- --6

-- --2

+ --2

+ 2

+ 2

-- 2

+ 2

-- 2

-- --2

+ --2

+ 2

-- --6

+ 2

-- --6

-- 2

+ --6

-- --2

+ --2

-- 2

+ --2

-- --2

+ --2

+ --6

+ 2

+ -6

-- 2

-- --6

+ 2

+ -2

-- --2'

-- 2

+ 2

+ 2

+ 2

-- 2

-- --2

-- --2

+ --6

+ 2

+ --2

+ 2

+ 2

-- --2

Table A-2 (cant'd)

Generation

method

s----4

No. of Generation
N

levels method

25 4 s-----4

0 2 linear sequence (opl)
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P

63

Sgn a i Ra(t) D

÷

÷

+

+

i

--1

--1

--1

--1

--1

--1

--1

--1

N

0

No. of

levels

Table A-2 (cant'd)

Generation

method

linear sequence (opt)

P

63

Sgn a_, Ra(/) D

m

+

+

÷

1

--I

--1

--1

--1

--1

-1

--I

--1

63

No. of Generation
N

levels method

0 2 linear sequence (opt)
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